S-Module Design for Software Hot-
swapping

By

Ning FENG

A thesis submitted to
the Faculty of Graduate Studies and Research
in partial fulfillment of the requirements for the degree of
Master of Engineering

Ottawa-Carleton Institute for Electrical and Computer Engineering
Faculty of Engineering
Department of Systems and Computer Engineering
Carleton University
1125 Colonel Drive
Ottawa, Ontario, Canada
KIS 5B6

November 25, 1999

Copyright
1999, Ning FENG

The undersigned hereby recommend to
the faculty of Graduate Studies and Research

acceptance of the thesis

S-Module Design for Software Hot-
swapping

submitted by

Ning FENG

in partial fulfillment of the requirements for the degree of Master of Engineering

A

Thesis Co-supervisor

Thesis Co-supervisor

Chair, Department of System and Con(pu/ter Engineering

Carleton University
November 25, 1999

Abstract

Research on software hot-swapping technology is driven by the increasing demands for on-line
software upgrading without the interruption of system service. This thesis proposes a new hot-
swapping infrastructure for designing and implementing software applications.

Several software design patterns have been investigated and analyzed for the design of the atomic
swappable unit, the S-Module. The Proxy Pattern has been promoted to a detailed design. which
leads to a development of the hot-swapping framework.

In the network management area, the SNMP world has recognized the value of dynamic upgrad-
ing and extension in recent years. The modular structure of SNMPv3 also provides a good test-
bed for our new hot-swapping framework. A real hot-swapping application based on the SNMPv3
agent has demonstrated that the goal of hot-swapping can be achieved by tollowing the technol-

ogy and methodology described in this thesis.

Acknowledgments

First. [wish to express my profound gratitude to my supervisor, Professor Bernie Pagurek.
for his consistent guidance and support during the course of my research. [would like to express
my special thanks to my co-supervisor, Mr. Tony White, for his invaluable guidance, inspiration.
and encouragement throughout the span of this research. Without their supervisions, my work
would not be of the same quality.

My thanks also go to colleague Gang Ao, who provided tremendous background research
in the area which this thesis is based upon.

[also wish to acknowledge the research funding from the Nortel Networks.

Finally, [would like to express my deep appreciation to my husband Jingdong, my son
Kevin, and my parents. without whose love, encouragement, and support this work would not

have been possible.

Chapter 1

1.1

Chapter 2

o
1o

Chapter 3

3.1

33

Table of Contents

Introduction 1
Background...........cccoiiiii e l
ODBJECHIVES ..ottt et 2
OrZaANIZALION.c...eeiiieeetieteeeie et ettt et ense et see s sesaeaeeeneee 3
Software Hot-Swapping Infrastructure 5
INEFOAUCHION......ciiiiiccee ettt e 35
New Software Hot-swapping [nfrastructureooeevevveeveceeveeeeeerenenen. 6
22D TeIMIS it ettt ettt et ereen et 6
2.2.2 Two Types of Software Hot-Swapping........cccccceveeeeervevieerceerennee. 6
2.2.3 Research on Software Hot-Swapping Techniquecccccevcveueeen, tl
Several Approaches in Designing S-Modules 13
SoMOQULR ..ttt e 13
3.1.1 Characteristics of an S-Module.........cooeeeeiieeiencniiieiceeieee, 14
3.1.2 Life Cycle of an S-Modulecccoorvereerrreeeieiiierierieceeeen, 15
The JVM Modification Approach..........cccceeeeeveeveceneciecieneneciee e, 16
2L TVM ettt ettt et 16
3.2.2 Hot-swapping in JVM ..ot 17
323 Pros and Comsccoocerieieninieeiereteeeteet et ene ettt 18
The Observer Pattern Approachc..cccoeoveviiiieciceeeeeee, 19
3.3.1 Observer Patterncccoceeeeeuierirveeieeeieneieceeeeeeeese e e eeane 19

34

35

3.6

Chapter 4
4.1

4.2

43

3.3.2 Hot-swapping by Using the Observer Patternccccoeveennne..... 21

3.3.3 Pros and COomscoeeoeieoimmeieiieiice e 26
The Proxy Pattern Approach.........ccoocooouiiiciiriiieeeeeeeeeeeee 27
34D ProxXy Pattern......ooocoioiiieeceeee e 27
3.4.2 Hot-swapping by Using the Proxy Patterncccccoerveverrennnnen... 28
343 Pros and COons ...coooooiiiioii e, 31
The Mediator Pattern Approachcc.ooeveiiiiiieeeeeeeeeecene 32
351 Mediator Patternc.coevveiieiiieicce s 32
3.5.2 Hot-swapping by Using the Mediator Patternc.cocoonn....... 33
3.5.3 Pros and COonsccoevuevieeneiiiececeeceee ettt 36
CONCIUSIONS ...ttt 37
Designing S-Modules by Using Proxy Pattern 39
LOZICal VIEWoviiiiiiiiiciicenee e 40
Rules for Designing an S-Moduleccccocoeiviviericvieecieeceeee e 43
421 TAENULY oot 44
422 SEIVICE ..ottt ettt 46
423 INternal SALeccooieuirerieieeiieeee et bene 49
4.2.4 Dependency LiSt........ccoeevmeveieneerineeeeeeeeee e seve s 52
4.2.5 Mapping Rule and PersiStencyccoceveveeeeeeerecnreeererenenrnennnn. 54
Rules for Designing an S-PIOXYccoeeueueeveeieiicirececceeeneeeeerevesesee e 57
4.3.1 AUIIDULES ...ttt en e 58
4.3.2 Interfaces for CHERNLS..........ccoueeeiererrereerirereeeee e seeeee e eteneanrenes 59
4.3.3 Interfaces for the Swap Manager...........cccccooveeveeeenerenerreernnennn. 61

i

44

4.6

4.7

Chapter 5

5.1

5.3

Major Abstract Classes Definition..........ccccoevevieinieeeeieevieereeceeeeceveeee, 63

441 S_ModuleSuper Class......cccccooveiviierierierieeeeeiee e 63
442 S_ProxXySuper Class.......ccooueeeicuiiiieeceeeeeeeeeeeeee e 65
443 S_Main Class c.cooevvueeirciiircieeeeee et 65
444 S_ModUIETYPEX ..omiiirerieeieeeeececeee et 66
445 S-ProXYTYPEX e 66
Component Diagram..........cooceeveeinieiiiiiice e et 66
Sequence DIiagramcccoccociiiiciiiiiniietceee e et 67
SCEIATIOS ...ttt ettt et e et es e e s s es e etesreebeensenes 69
4.7.1 New and Old S-Modules Have Same Behavior Methods.............. 69
4.7.2 New S-Module Does Not Have All Old S-Module Methods 71
4.7.3 New S-Module Has Methods That Old S-Module Does Not........ 73
Hot-swapping Application: A Swappable SNMP Agent.......ccccceeeereene 75
SNMP AICRITECTULE.......cviveiiiiiiiie et s e 76
5.1.1 Background Information..........cooecieeerecrinieriericeeeeceee e, 76
5.1.2 SNMP AIChIteCture.......covoieeeeiieeiecee et eenens 77
5.1.3 User-Based Security Modelcccocevemioieerrecineeieeeeneeeerinen, 79
5.1.4 Abstract Service Interface..........coccoeveienierinrernrcsieeectee e 80
Swappable SNMP Agentococoiiiiicere e 81
5.2.1 System ATChItECIUIE........covevvuerrieeiecerreteereeereeeeeseestsseeresseesesseans 81
522 S-COMPONENLS.......coererieirieie et eeietaecebe e aesessaes e seassssssessens 83
5.2.3 Class Diagrami........c.cocceeiiininriinieieteeeceeee e esse st senennns 85
Tests and RESUILS.......c.coucuiiiiiciiece e et 87

il

Chapter 6
6.1
6.2

6.3

References

Conclusions, Contributions and Suggestions for Future Research.....92

CONCIUSIONS. ...ttt e es s 92
CONEIIDULIONSeeimeiiriiceee ettt e 93
Suggestions for Future Researchc..ccooovoveiiiciceee 93

96

FIGURE 2-1

FIGURE 2-2

FIGURE 3-1

FIGURE 3-2

FIGURE 3-3

FIGURE 3-4

FIGURE 3-5

FIGURE 3-6

FIGURE 3-7

FIGURE 3-8

FIGURE 3-9

FIGURE 3-10

FIGURE 3-11

FIGURE 4-1

FIGURE 4-2

FIGURE 4-3

FIGURE 4-4

FIGURE 4-5

FIGURE 4-6

FIGURE 4-7

FIGURE 4-8

FIGURE 4-9

Table of Figures

Software Hot-swapping at the Program Level...............cocooveeviereecnennnne. 7
Software Hot-swapping at the Module Levelccocovvveveveveenennneee. 9
The JVM Modification Approachc.ccoovvveieiiiiiieeceeeeee 18
Observer Pattern StruCtUrec..covevmriiiieeiceeeeceee s 20
Observer Pattern Collaboration Diagramcc.covevveveeeeicicvennneenennn. 21
The Observer Pattern Approachc.oc.ooveeievieicieieccceeeenn 22
Object Reference Propagation Problemc..ccocvoovveieiieeieveiin, 24
Proxy Pattern SIUCIUTEcoccevvireeniiiieceeeeee et 27
Proxy Pattern Object DIagramcoceeueieuveeeenieeceeceeeeveeeeeeeeee 28
The Proxy Pattern Approachcccocoeeeeeiieiieiciiceceeeeeeee e, 29
Mediator Pattern StrUCIUTEc.cccoveieeviireeeecee e 32
Mediator Pattern Object Diagramcoeeueeveeiiecreeeiereeeeeeneeeevee 33
The Mediator Pattern Approachcoevvvviveveieieieeceeee e 34
Designing S-Module by Using Proxy Patternccccooveveieverveninennan. 39
Logical View of Programs with S-Modulesc..ccoveevreecverirrennene. 41
State DIAIaAMc.coueiieeieeeeeieretne ettt et 51
Dependency Map and Deadlock Conditioncceeeveverececnrecrencncane. 53
Interfaces In an S-Module and Its S-Proxyccccceeveveeivecevevnneecennnen. 67
Sequence Diagramco.coeemvimninninnineeiree et 68
New and Old S-Module Have Same Behavior Methods 70
New S-Module Does Not Have All Old S-Module Methods 72
New S-Module Has Methods That Old S-Module Does Not 74

FIGURE 5-1 Command ReSPONAETcooeummiuemiuireeiinieeeeceeeeee et eee e 80
FIGURE 5-2 A Swappable SNMP AGENTovomiieieieieeeeeeee oo 83
FIGURE 5-3 Swappable SNMP Agent Class Diagram (User-Based Security Model).86

FIGURE 5-4 Test System EnvirOnmentoooueuieveveeeeeeeeee oo eeeeeeseie e 87

vi

Chapter 1 Introduction

1.1 Background

Change is inevitable in software. Software changes such as bug-fixes, updates, or func-
tionality upgrades are generally referred as software upgrading. It has been an issue since
the running of the first software program in the computer world. A hot research topic in
software upgrading is the on-line real-time software upgrading which meets the require-
ment of not interrupting system services. It is very crucial under certain circumstances, i.e.
in telecommunication networks and real-time control system, where the interrupting of
services for software upgrading is unacceptable. Software upgrading is generally not easy,
especially in computer communication networks where software can be widely distributed
across heterogeneous domains. The capability to provide the continuity of service in a
computer network, or software applications in general, has become an important asset for

the service provider to stay ahead of the competitors.

Studies on software upgrading techniques have shown that current deployed technologies
are not well suited for a smooth transition of services due to upgrades and bug-fixes [1].
Most of these technologies, such as the code patch, require the server, in which the appli-
cation resides, to be shut down and the system to be re-booted. Since software upgrading
can’t be avoided, and in some cases must be accomplished on-line, software upgrading

should be planned and prepared at design time. A new solution is highly demanded.

Research on software hot-swapping technology is driven by increasing demand for on-line
real-time software upgrading without the interruption of system services. The term “hot-
swapping” comes from the hardware world which normally means the replacement of a
hardware module such as a CD-ROM driver, power supply, or other devices with a similar
device while the computer system using them remains in operation. Similarly, software
hot-swapping refers to the replacement of a software program or part of a program while

the whole software system remains in service.

The development in computer technology and software development methodology makes
it possible to achieve the software hot-swapping. For example, the form and acceptance of
software design patterns paves the road for standard software design and implementation
which in turn makes software upgrading easier. Software design patterns offer a method of
documenting proven designs and evaluating aspects that can vary [3]. A design pattern

addresses a recurring problem in a given context and a proven solution to that problem.

In this thesis, a new infrastructure for a software hot-swapping system is proposed and the
components of the infrastructure are introduced. The thesis focuses on the research on the
design of the atomic unit of software swappability, the swappable module (S-Module), by
applying different design patterns. A detailed design based on the Proxy Pattern approach
is developed and the design has been applied to a real application, the Simple Network

Management Protocol (SNMP) version 3 agent, for the experimental purpose.

1.2 Objectives

The main objectives of this thesis are as follows:

~

1. Propose a new software design/implementation infrastructure for software hot-swap-
ping application programs based on the object-oriented programming and distributed

computing techniques.

9

Conduct research for defining the atomic software unit of the hot-swapping system.
Propose and analyze several approaches based on different design patterns and recom-
mend on the design choice. Define the designing rules for the S-Module in the hot-

swapping framework by using the recommended approach.

3. Apply the new hot-swapping framework to a real application as a test-bed. Demon-

strate and test the design of the hot-swapping framework.

1.3 Organization

The remaining chapters of this thesis are organized as follows:

Chapter 2 briefly overviews the current techniques of software upgrading, and proposes a
new infrastructure for software on-line upgrading. The research target of this thesis is

high-lighted again at the end of this chapter.

Chapter 3 describes and analyzes four potential approaches in designing the swappable
software module, which is called the S-Module. These four approaches are: a Java Virtual
Machine modification approach, an Observer Pattern approach, a Proxy Pattern approach,
and a Mediator Pattern approach. After comparative analysis of the advantages and the

disadvantages, the Proxy Pattern approach is selected as the most promising one.

Chapter 4 gives a detailed design of the hot-swapping framework based on the Proxy Pat-
tern approach. The focus of the design is on the characteristics of the S-Module, the S-

Proxy, and their relationship with the Swap Manager.

Chapter 5 presents how a real application in the network management area is designed and
reconstructed following the rules defined in Chapter 4, thus making it a hot-swapping
application. The application, a swappable SNMP agent, is first introduced, followed by a
description of the class hierarchy. Test results and limitations are summarized at the end of

this chapter.

[n Chapter 6, this thesis is concluded. contributions and recommendations for future

research are discussed.

Chapter 2 Software Hot-Swapping

Infrastructure

2.1 Introduction

The research on software hot-swapping technologies evolves along the development of
object-oriented (OO) programming/system. Early research on software hot-swapping,
such as Common Lisp Object System (CLOS) [1], focuses on dealing with the issues such
as dynamic typing, run-time interpretation. etc. which in turn are adopted by the next gen-
eration OO programming languages such as Java. The new OO languages (Java, C++.
etc.) and programming environments enable us to take full advantage of OO methodology

and its capabilities for creating flexible, modular, and swappable software programs.

Software hot-swapping technology is also atfected by the development in distributed com-
puting technology, such as Javabeans, RMI etc. [1]. The ubiquitous client-server architec-
ture broadens the scope of software hot-swapping from a stand alone system to a group of

interconnected systems.

Developments in OO programming and distributed computing technologies bring us both
challenges and opportunities to develop a new software hot-swapping infrastructure. The

purpose of this thesis is to analyze this infrastructure, its components, and key algorithms.

In the next section, some terms are introduced first, continued by the definition of two
types of software hot-swapping. The hot-swapping infrastructure and its components that

this thesis focuses on is described at the end.

2.2 New Software Hot-swapping Infrastructure

2.2.1 Terms

The research subjects in software hot-swapping are software programs and modules. [n
the context of this thesis. a software program is an executable software entity which is
made up of one or more software modules. A software module has certain functions
which provide services to other modules in the program. Through the interactions between
modules, a program provides certain services to other programs, which in turn forms a

complex software system.

In the OO world, everything is an object. We define a module as an object which is made
up of other objects. The services provided by the module are defined in the behavior of the

objects.

2.2.2 Two Types of Software Hot-Swapping

Based on the definitions about software program and software module, we can have two
types of software hot-swapping: program level software hot-swapping and module level

software hot-swapping.

2.2.2.1 Program Level Software Hot-swapping

At this level, the swappable software entity is a program within a complex software sys-
tem. The on-line upgrading of a software program within this system should not interrupt
the system services. We define such a system as a hot-swapping system. The swappable
program is called an S-Program in contrast to non-swappable programs. In order to con-
duct the program swapping. a mediator or a controller is needed, we call it an S-Program-
Swap-Manager, which controls the hot-swapping transaction between S-Programs. and
interacts with other programs. For example, a hot-swapping system. as shown in Figure 2-
l. is composed of one S-Program-Swap-Manager program. several S-Programs and non
S-Programs, as well as some client programs which are software entities that consume the

services provided by the S-Programs.

N | |
c S-Program NC
; :::30 S-Program :
-t E | — — + S-Program ;
=l = !
g a2
sz |
! gné ;\
g <
e g
@z
« o
3 ™ NC '
non-S-Program «
Client
A/ICID< L Program
A/l: Application [nterface S/T: Swapping Interface NC: Network Component

FIGURE 2-1. Software Hot-swapping at the Program Level

The S-Program-Swap-Manager is the control centre of the whole hot-swapping system. It
can access and control all the S-Programs on the same network component. All client pro-
grams must contact the S-Program-Swap-Manager in order to get the services of S-Pro-
grams. The S-Program-Swap-Manager has two parts: the S-Manager and the S-Service.
The S-Manager is in charge of the hot-swapping transaction between two S-Programs, the
old version S-Program and the new version S-Program. The S-Service acts as an interface
for client programs on the other network components to use the services of S-Programs.
However. client programs can use services of non-S-Programs directly, without interact-

ing with the S-Service.

Each S-Program should provide two interfaces: a swapping interface (S/I in the Figure 2-
1) for interacting with the S-Manager, and an application interface (A/1) for the S-Service.
The non-S-Programs provide only an application interface to communicate with the client

programs (Figure 2-1).

The hot-swapping transaction happens only between the S-Program-Swap-Manager and
different versions of the same S-Program. It is transparent to other S-Programs. client pro-

grams and non-S-Programs.

2.2.2.2 Module Level Software Hot-swapping

At this level, the swappable software entity is a module within an application program.
Replacing or upgrading the swappable modules during the execution of an application will
not interrupt the services of the program. We define such an application as a hot-swapping
application called S-Application. The swappable module is called an S-Module in contrast

to non-swappable modules.

In order to conduct S-Module swapping, a mediator is needed. We call it the Swap Man-
ager, which controls the hot-swapping transaction. Figure 2-2 shows an S-Application

composed of one Swap Manager, several S-Modules and non-S-Modules.

‘ S-Application
S-Modul
! S-Module Swap s
| i S-Module
] -y — -
| i Manager ! | l_
{
A *
L 4

' |

{ S-Module
|
non-S-Module ~—————»

FIGURE 2.2, Software Hot-swapping at the Module Level

An S-Module exists within an S-Application program. it is not a stand alone executable
entity. An S-Module cooperates with other S-Modules and non-S-Module components
inside the same application program, provides certain services during run-time. and com-

municates with the Swap Manager.

The Swap Manager has access to all S-Modules. As defined by Gang Ao in an initial
study, it provides the following services [1]:

¢ Listening service, which waits for the arrival of new S-Modules and instantiates them.

e Security service, which performs the authentication checking of the incoming S-Mod-

ule.

o Transaction service, which provides the control of hot-swapping transaction.

Timing service, which ensures timely completion of the hot-swapping transaction.
Event service, which informs the relevant entities about the hot-swapping actions.

Repository service, which caches the states of the old S-Module during the hot-swap-

ping transaction.

A basic scenario of the module level hot-swapping is as follows:

(=)

. An S-Application is running and in service. One or a group of new S-Modules are sent

by an administrator to the S-Application.

. The listening service of the Swap Manager in the S-Application receives the codes

(new S-Modules) and checks the authentication of the loaded codes.

. If the incoming codes pass the security check. the Swap Manager instantiates corre-

sponding objects, and checks if the new S-Modules have dependent S-Modules which

must be in the system before this S-Module could be swapped in.

. The Swap Manager targets those S-Modules to be swapped out, blocks new calls to

them and starts timing the hot-swapping transaction.

. When all the targeted S-Modules are ready to be swapped out, the Swap Manager gets

and stores all the necessary attributes of these S-Modules and mapped the attributes to

the new S-Modules.

. After the attributes mapping, all new S-Modules are swapped in replacing the old S-

Modules, and the blocked calls are released. The timing service stops timing. The hot-

swapping transaction is completed successfully.

10

7. If within a certain time limits, any of the old S-Modules is not ready to be swapped out
or any of the new S-Modules fails the attributes mapping, the whole hot-swapping
transaction aborts. The blocked calls on the old S-Modules are released by the Swap

Manager and the old S-Modules are resumed.

2.2.3 Research on Software Hot-Swapping Technique

Software hot-swapping is a complex issue involving multiple technologies, such as OO
technology. distributed computing technology, programming language technologies. etc.
As at the initial stage of the research on hot-swapping technique. this thesis only focuses

on the hot-swapping at the software module level.

One of the main issues in module level hot-swapping is the design of S-Modules. Other
issues include defining a protocol for mobile S-Modules (code), loading codes and instan-
tiating objects, as well as defining the services provided by the Swap Manager. This thesis
discusses and analyzes some possible approaches for designing S-Modules in a hot-swap-
ping application, and gives suggestions on the design choice. A detailed study on the char-

acteristic of the Swap Manager is currently under research by colleague Gang Ao [2].

In the next chapter we will introduce four possible approaches for designing an S-Module:
a Java Virtual Machine (JVM) modification approach. an Observer Pattern approach, a
Proxy Pattern approach, and a Mediator Pattern approach. The last three approaches are
based on design patterns [3]. A design pattern addresses a recurring design problem that
arises in specific situations and describes a solution to it. For these approaches, first the
design pattern is introduced, then how to apply the particular pattern in the hot-swapping

application is discussed, and finally an analysis of this approach is given.

11

All the approaches are based on the following assumptions:

e The software is written in Java, taking the advantage of Java’s features, such as object-
oriented, distributed, interpreted, robust, secure, architecture-neutral, portable, persis-
tent, multi-threaded, as well as providing dynamic type checking and automatic gar-

bage collection.

e An S-Module includes one object or a group of objects. We are talking about hot-swap-

ping at the object (instance of a class) level.

[tis worth mentioning here that because Java is a strongly typed language, if two methods
have the same syntax (method name and argument lists) then the behaviors of the methods

are not distinguishable.

Chapter 3 Several Approaches in

Designing S-Modules

3.1 S-Module

Before we go ahead with the discussion of the design of an S-Module, it is necessary to

investigate and identify the characteristics of an S-Module.

As mentioned in the previous chapter, an S-Module is a software entity which can be
replaced or upgraded during the execution of a program. The biggest difference between
an S-Module and a non-S-Module is that upgrading an S-Module will not interrupt the
running of the program, while upgrading a non-S-Module generally needs re-compilation,
re-linking and re-starting of the program. An S-Module exists within a program. it is not a
stand alone entity, instead it interacts/cooperates with other S-Modules and non S-Mod-
ules within the same application program. The special requirements and existing environ-
ment decide that an S-Module should have a set of specific characteristics in contrast to a
non-S-Module. When we design an S-Module, those characteristics have to be taken into
consideration. Another aspect we need to consider in the S-Module design is its life cycle
which defines a procedure that an S-Module will follow. The life cycle of an S-Module

will be discussed in Section 3.1.2 .

13

3.1.1 Characteristics of an S-Module

o Identity: An S-Module has a unique existence and identity which can be used to iden-
tify an S-Module of a certain type in the scope of a certain swapping model. The iden-
tity of an S-Module also provides detailed information about the S-Module such as a
version with major and minor indices and annotation that describes the nature of the

changes from a previous version, the name of the vendor and the date of release.

¢ Service: An S-Module should provide a set of services. Same type of S-Modules
should have the same set of services. A service specification provides the guideline for
the services. For example. a security S-Module should provide the following basic ser-
vices: encryption, decryption. authorization, and authentication. If two S-Modules are

to be swappable, they must at least provide the same services.

« Internal State: An S-Module has a set of internal states. [n some states an S-Module is
swappable, in others not. If and only if an S-Module is in its swappable state. can a hot-
swapping transaction take place. Any services provided by an S-Module should be fin-
ished within a finite time, and the S-Module returns to the “idle” state after completing

the service.

* Dependency List: An S-Module should have a dependency list which includes the S-
Modules that this S-Module depends on. Before an S-Module can be activated, the S-
Modules that it depends on must have been loaded into the S-Application and been acti-

vated.

o Mapping Rule: Associated with each S-Module is a set of mapping rules which control

the transfer of the attributes between versions of the S-Module.

14

Persistence: During a hot-swapping transaction, the system resources held by an S-
Module, such as opened files, in-service communication channels, etc., should be

released or transferred to the new S-Module.

Administration Interface: An S-Module should provide an interface for the Swap

Manager to manage it.

3.1.2 Life Cycle of an S-Module

The following is a description of the life cycle of an S-Module:

o

. A new S-Module is defined and designed according to a service specification.
. The new S-Module is assigned a unique identity.

. The new S-Module is sent to the Swap Manager of a running S-Application, and the

Swap Manager identifies the “old” S-Module that is to be replaced.

. The Swap Manager will check the internal state of the “old” S-Module through its

administration interface. If the S-Module is in a swappable state, a swapping transac-

tion will happen and the S-Module enters the “swapping state”.

By applying the mapping rules, the internal states (attributes) of the “old” S-Module

will be converted to the internal states of the new S-Module.

. The system resources allocated by the “old”” S-Module will be released or transferred to

the new S-Module to achieve persistency.

15

7. The Swap Manager activates the new S-Module to provide services until it is replaced
by another S-Module. The “old” S-Module will be removed from the program by the

Swap Manager after being swapped successfully.

3.2 The JVM Modification Approach

3.2.1 JVM

The Java Virtual Machine (JVM) is an abstract computer that runs compiled Java pro-
grams. The JVM is “virtual” because it is generally implemented in software on top of a
“real” hardware platform and operating system. The JVM is central to Java's portability
because complied Java programs run on the JVM. independent of whatever may be under-

neath a particular JVM implementation.

The Java Virtual Machine can be divided into five fundamental pieces: a byte-code
instruction set, a set of registers, a stack, a garbage-collected heap, and an area for storing
methods. These parts are abstract but they must exist in some form in every JVM imple-

mentation.

The heap is the run-time data area from which memory for all class instances and arrays is
allocated. The Java heap is created on virtual machine start-up. Heap storage for objects is
reclaimed by an automatic storage management system (typically a garbage collector);

objects are never explicitly de-allocated [4].

16

Java is a strongly typed language, which means that every variable and every expression
has a type that is known at compile time. The types of the Java language are divided into
two categories: primitive types and reference types. A primitive type is a type that is pre-
defined by the Java language and named by a reserved keyword. A reference type is one of
the three kinds: the class types. the interface types and the array types. An object is a
dynamically created class instance or an array. The reference values (often just references)

are pointers to these objects and a special null reference. which refers to no object.

Java objects are referenced indirectly at run-time, via objectref. which is a kind of indirect
pointer into the heap. Objects are automatically garbage-collected in Java, the program-
mers do not have to (and, in fact., can not) manually tree the memory allocated to an object
when they are finished using it. Because objects are never referenced directly, parallel gar-
bage collectors can be written that operate independently from the program, moving

around objects in the heap [5].

3.2.2 Hot-swapping in JVM

The Java Virtual Machine specification [4] does not require any particular internal struc-
ture for objects. Different JVM implementations may use different techniques. In Sun’s
current implementation of the Java Virtual Machine, a reference to a class instance is a
pointer to a handle that is itself a pair of pointers: one to a table containing the methods of
the object and a pointer to the Class object that represents the type of the object, and the

other to the memory allocated from the Java heap for the object data.

Figure 3-1 shows the indirect referencing of the JVM. object!, object2 and object3 are all
allocated on the heap. object2 and object3 are objects of the same type. object! has a refer-
ence to object2, this is implemented by object! holding a pointer to a handle which again
has a pointer to the address where object2 is. This indirect referencing not only allows a
garbage collector to operate independently from the program, but also give us a chance to
hot-swap one object with another at run-time. If the pointer to objecr2 in the handle of
object! can be changed with a pointer to another object object3. together with a proper
state mapping process. then object2 is hot-swapped with object3. object! will not be

aware of the change.

heap

T ———N
—Wlobject? < > |
/ object3 e

\ N >
_,/-,i/' handle ?/

FIGURE 3-1. The JVM Modification Approach

3.2.3 Pros and Cons

This idea of hot-swapping objects inside the JVM is straight forward but to implement it is
not as simple as it may seem. An object reference in Java is actually an indirect index to

the real pointer, and a large object table exists to map these indirect indexes into the actual

18

object reference [5]. This indirection allows the garbage collector to mark. sweep. move,
or exam one object at a time. Each object can be independently moved out from a running
Java program by changing only the object table entries. Running in a separate thread,
Java’s parallel garbage collector cleans up the Java environment silently and in the back-

ground.

Difterent implementation of Java Virtual Machine use different techniques, so the design

of hot-swapping system is JVM specific.

To write a hot-swapping system inside the JVM, all these factors must be considered and
be taken care of. The difficult part could be collaborating with the garbage collector,
which is already a complicated algorithm. A “smart” solution would probably involve
writing a swap-aware garbage collector. On the other hand having the JVM take care of

the hot-swapping transaction makes the application program easy to write.

Changing or moditying the JVM. however, will introduce an extension to the Java stan-

dard which is not the interest of our research.

3.3 The Observer Pattern Approach

3.3.1 Observer Pattern

The Observer Pattern defines a one-to-many dependency between objects so that when

one object changes state, all its dependents are notified and updated automatically [3].

19

The key objects in this pattern are subject and observer. A subject may have any number
of dependent observers. All observers are notified whenever the subject undergoes a
change in state. In response, each observer will query the subject to synchronize its state

with the subject’s state.

An Observer Pattern is typically represented as the following class diagram (Figure 3-2).

Subject l > Observer

Attach(Observer) | | Update() 1

Detach(Observer) | N

| Notify() | T

T‘__

P S

i ConcreteSubject g ConcreteObserver

' GetState() i Update() |
i

subjectState | observerState i
. L]

FIGURE 3-2. Observer Pattern Structure

Subject: maintains a list of observers and provides an interface to attach and detach

observers at the runtime.

Observer: provides an update interface to receive signal from subject.

ConcreteSubject: stores subject state interested by observers and sends notification to its

observers when any change occurs.

ConcreteObserver: maintains observer state and a reference to a ConcreteSubject object;

implements update interface to keep its state consistent with the subjects.

20

An Observer Pattern collaboration diagram is shown in Figure 3-3:

- 1
[aConcreteSubject] | aConcreteObserver! | aConcreteObserve}
Attach(this)
Attach(this)
SetState() [
S J
é Notify() i
Updatet) ; |
=1 .
GetState() | i
Update()
[GetState()

FIGURE 3-3. Observer Pattern Collaboration Diagram

3.3.2 Hot-swapping by Using the Observer Pattern

3.3.2.1 Rationale

One of the challenging issues in designing a software hot-swapping system is to solve the
object reference problem. This approach comes from the idea that when an old S-Module
is hot-swapped with a new one, all the objects that have a reference to the old S-Module
should be notified and thus be forced to update the reference to point to the new S-Mod-

ule.

As shown in Figure 3-4, a hot-swapping program includes a Swap Manager, several S-
Modules, a subject (S-ModuleSubject) which takes the S-Modules as its internal states,
and some non-S-Modules. The relationship between S-ModuleSubject and S-Module can

be 1:1 or [:many.

Any object (S-Module or non-S-Module) that interacts with an S-Module is an observer of
that S-Module. The subject that the observers register for, such as the S-ModuleSubject in
the figure, is also a container object which takes all the S-Modules as its internal states.
Any object (observer!) that wants to interact with an S-Module, such as oldS-Modulel,
must register itself with the S-ModuleSubject as an observer of a state (oldS-Modulel),
and get the reference to that S-Module so that it can invoke methods of the oldModule !
directly. When the oldS-Module! is hot-swapped with the newS-Modulel, all the regis-
tered observers (observerl) of the oldS-Module! will be notitied and updated with the ref-

erence to the newS-Module .

3. send message

Swap Manager

FIGURE 3-4. The Observer Pattern Approach

The subject (S-ModuleSubject) will handle the administration of the observers as well as
manage and maintain its states (S-Modules). The Swap Manager will contact the S-Mod-

uleSubject to control the swap transaction.

The sequence of messaging is as follows:

£

. An object (observer!) wants to access the services provided by an old S-Module (o/dS-

Modulel), it must first contact the corresponding S-ModuleSubject and register itself as

an observer of the state (0oldS-Modulel).

After registration. the S-ModuleSubject will pass the handle of the oldS-Module! to

observer!. From now on the observer! has a reference to the 0ldS-Modulel.

. Using the acquired object reference, observer! requests S-Module's services by send-

ing messages to oldS-Module ! directly.

Now the Swap Manager wants to swap the oldS-Module | with a new S-Module (news-
Modulel). Making sure that the oldS-Module! is in a swappable state, for example, no
other objects are currently sending messages to the oldS-Modulel. the Swap Manager
retrieves the states of the oldS-Modulel and converts the states to the newS-Module!
properly according to the mapping rules, then swaps the oldS-Module! with the newS-

Module!.

. After swapping the oldS-Module! with the newS-Modulel. the Swap Manager sends a

notification message to the S-ModuleSubject and asks all the related registered observ-

ers be notified of the change.

The S-ModuleSubject will then send messages to the related observers to update their

references to refer to the newS-Modulel.

. From now on, observer! can send messages to the newS-Module! directly. Since no

reference to the oldS-Modulel exists any more, the oldS-Module!l can be garbage col-

lected later by the Java Virtual Machine.

23

3.3.2.2 Known Issues

3.3.2.2.1 Reference Propagation Issue

This approach works well with direct referencing like the observer! in Figure 3-4. There
are cases when other objects get a handle of the 0ldS-Module! from the observer! but not
from the S-ModuleSubject directly. This indirect referencing will propagate the handle of
the oldS-Modulel to other objects which have not registered with the S-ModuleSubject,
thus those objects will not be notified when the oldS-Modulel is swapped with the newS-

Modulel. The approach for hot-swapping will fail in this case.

Figure 3-5 shows the propagation problem. An object (observerl) has acquired a direct
handle of the S-Module (aS-Module) by registering itself with the subject (S-ModuleSub-
Ject). Another object (anObject) has not registered directly with the S-ModuleSubject as an
observer of aS-Module. however when anObject sends a message to observer!. observer!
could pass the reference of uS-Module to anObject. Now anObject also has a handle of uS-

Module which the S-ModuleSubject does not know about.

aS-Module

anObject

FIGURE 3-5. Object Reference Propagation Problem

One way to solve the problem of reference propagation or so called objects cascading is to
propagate the design of the Observer Pattern too. observer! should also keep a record of to
what objects it has returned the handle of aS-Module. Thus when observer! is called to
update its reference to aS-Module, all the members in that record will also be asked to

update accordingly.

Another way of solving this problem is for observer! to force anObject to register with the
S-ModuleSubject automatically before observerl returns the handle of aS-Module to

anObject.

Either way could work theoretically. However, they all put the burden of reference updat-
ing on the observers like observer!. observer! has the responsibility to propagate the
updating of aS-Module. If it fails to do so the whole hot-swapping procedure fails. The sit-
uation will become worse when observer! has several references to update. Besides the
potential performance problem this approach is also against the spirit of our hot-swapping
technology, which is to upgrade objects or S-modules without affecting the other parts of
the system. The swapping transaction should be controlled only within the Swap Manager
and the S-modules, other parts of the system should not even notice the swapping activity,

or at the very least should not participate in the swapping procedure.

3.3.2.2.2 Direct Reference Issue

In the Observer Pattern approach, objects have direct references to S-Modules, the subject
(S-ModuleSubject) or the Swap Manager has no control over the access to S-Modules by

other objects. In the worst case we could end up with different versions of the same kind

of S-Module co-existing at the same time, which may even cause the whole application to

break down.

3.3.3 Pros and Cons

The Observer Pattern provides the abstract coupling between subjecr and observer. All a
subject knows is that it has lists of observers. each conforming to the simple interface of
the abstract Observer class. The subject does not know the concrete class of any observer.

Thus the coupling between subject and observers is abstract and minimal.

The disadvantage of this approach is that it forces all the observers who want to access the
services provided by an S-Module to register themselves to the subject of which the S-
Module is a state. so that when the S-Module is hot-swapped all the observers could be
notified and updated. This means that any object in the application program needs to fol-
low certain design and implementation rules. if it wants to use the services of S-Modules.

If it fails to do so. the whole hot-swapping transaction fails.

It is the programmers’ responsibility to make the objects which want to use the services of
S-Modules register with the S-Module’s subject and keep track of the reference propaga-
tion. This will tremendously increase the complexities of the program and makes it very

difficult to maintain.

Another disadvantage is the performance issue. Depending on how many observers are
registered with the S-ModuleSubject, the notification procedure could take various time

periods. Thus the performance of the hot-swapping system is application dependent.

3.4 The Proxy Pattern Approach

3.4.1 Proxy Pattern

The Proxy Pattern provides access control to an object by having a surrogate or place-

holder for 1t [3].

Figure 3-6 shows a class diagram of the Proxy Pattern. The key objects in this pattern are

Proxy and subject.

Proxy: maintains a reference that lets the proxy access the real subjecr: provides an inter-
face identical to subject’s so that a proxy can be substituted for the real subjecr. controls

access to the real subject.

Subject: defines the common interface tor RealSubject and Proxy so that a proxy can be

used anywhere a RealSubject is expected.

RealSubject: defines the real object that the proxy represents.

Subject

Client | — — — —

Request()

RealSubject <@—— Proxy
Request() Request()

FIGURE 3-6. Proxy Pattern Structure

27

Figure 3-7 shows a possible object diagram at run-time. A protection proxy (aProxy) con-
trols access to the original object (aRealSubject) by de-coupling the client (aClient) and a
real subject (aRealSubject). aClient only has a reference to aProxy. only aProxy has a ref-

erence to aRealSubject.

aClient

. aProxy
subject SR aReualSubject

realSubiect

FIGURE 3-7. Proxy Pattern Object Diagram

3.4.2 Hot-swapping by Using the Proxy Pattern

3.4.2.1 Rationale

The main idea of having a proxy for each S-Module is to prevent direct access to the S-
Module. This idea is similar to the JVM which acts as an abstract interface between the

application and the underlying real computer.

Each S-Module has one proxy object (here we call it the S-Proxy object) associated with
it. This is shown in Figure 3-8. An S-Module and its S-Proxy together comprise an S-
Component. Thus the hot-swapping system contains one Swap Manager, several S-Com-
ponents and other non S-Module objects. The S-Proxy is not swappable, it is created once

when the program starts up and the corresponding S-Module object is instantiated.

aS-Component ‘
|
|

N aS-Proxy :
] > ;
| otherS- | |
1Componcm A !
| {

Swap Manager

FIGURE 3-8. The Proxy Pattern Approach

A hot swapping scenario in the Proxy Pattern approach looks like this:

[R8]

. The Swap Manager gets a message from its listening service. The incoming message

includes all the information about a new S-Module, including the identity, such as the
object ID of an S-Module which is going to be hot-swapped, the version of the S-Mod-
ule, and the code for instantiating objects, etc. (The protocol for messaging between the

Swap Manager and the outside world will not be discussed in this thesis).

. After the security service finishes the authentication checking with a successful result,

the incoming new S-Module is instantiated to an S-Module object (here we call it a new

S-Module. The object instantiation is the subject of other researches).

. The Swap Manager searches for the S-Proxy of the current S-Module (here we call it

the old S-Module) with the specific identity, and sends a message to the S-Proxy to

block the new calls, and starts the timing service.

. Then the Swap Manager checks with the S-Proxy if the old S-Module is in a swappable
state. If no, which means it can not be swapped now, the Swap Manager will wait until

all the interactions with this S-Module finish. or until a time-out event occurs.

. When the old S-Module enters the swappable state, the Swap Manager calls the S-
Proxy to get the internal states of the old S-Module, and maps them to the states of the
new S-Module. (The mapping between different versions of S-Modules is discussed

later).

. After the new S-Module has been successtully initialized. the Swap Manager issues a
hot-swapping transaction by changing the reference to the old S-Module in the S-Proxy

with the reference to the new S-Module.

. The timing service stops timing and checks if the transaction is finished within the
required time limit. If yes. this hot-swapping is successful. The Swap Manager releases
the blocked calls.

. If during step 4 to step 6, the timing service gets a time-out event, this transaction is
failed. The Swap Manager should send out a notification about this transaction and

release the blocked calls.

3.4.2.2 Known Issue

The Proxy Pattern approach is based on the assumption that the proxy object (S-Proxy) is

not swappable, while the real object (S-Module) it represents can be hot-swapped. The

interfaces on the proxy objects are fixed. However, sometimes different versions of the S-

Module may have different behavior methods, this will cause exceptions when the S-

Proxy forwards the calls to the new S-Modules. Later in Chapter 5 , we will discuss how

30

to extend this approach to support the so called dynamic messaging function, which

allows changes in some behavior methods of different versions of S-Modules.

3.4.3 Pros and Cons

The Proxy Pattern approach does not have the problem of reference propagating as dis-
cussed in the Observer Pattern approach, because all the client objects only have refer-
ences (directly or indirectly) to the S-Proxy. Only the S-Proxy has a reference to the
corresponding S-Module. The client objects and the S-Module are decoupled by the S-
Proxy. The client objects should not be aware of the swapping transactions between the S-
Proxy and the Swap Manager. This will tremendously reduce the complexity of client

objects as contrast to the Observer Pattern approach.

Another advantage of the Proxy Pattern approach over the Observer Pattern approach is
that it makes dynamic messaging possible. By using the Java reflection APIs. an S-Proxy
can identify all the members that are associated with an S-Module and invoke the methods
on it at run-time. This means that if the S-Proxy has an interface to accept dynamic mes-
sages, the client objects can use new services of the new S-Module which are not sup-
ported by the old S-Module at run time. However, the reflection process takes time and

will affect the whole system performance.

In an S-Application, each S-Module object should have one S-Proxy object created for it.
The hot-swapping transaction will not generate new S-Proxy objects. If the system has

many S-Modules, the overhead of creating and managing the same number of S-Proxies

31

can not be ignored. This is again a trade-off between the flexibility and the performance of

an application.

3.5 The Mediator Pattern Approach

3.5.1 Mediator Pattern

The Mediator Pattern defines an object that encapsulates how a set of objects interact with
each other. A mediator promotes loose coupling by keeping objects from referring to each

other explicitly, and it lets you vary their interaction independently [3].

The main two parts in the Mediator Pattern are one mediator and several colleagues. Fig-

ure 3-9 shows the structure of the Mediator Pattern.
Mediator: defines an interface for communicating with Colleague object.

ConcreteMediator: implements cooperative behavior by coordinating Colleague objects:

knows and maintains all its colleagues.

Colleague: knows its Mediator object; communicates with its Mediator whenever it would

have otherwise communicated with another colleague.

Mediator (& Colleague

T =

ConcreteMediator |———————gm{ ConcreteColleaguel ConcreteColleaguel

FIGURE 3-9, Mediator Pattern Structure

32

Figure 3-10 shows an object diagram of the Mediator Pattern.The ConcreteMediator has
references to all the colleagues. AColleague! and aColleague?2 do not have references to
each other. They send and receive requests trom aConcreteMediator. The aConcreteMedi-
ator implements the cooperative behavior by routing requests between the appropriate

colleagues.

aColleaguel |

mediator \
: aConcreteMediator

colleague

aColleaguel

\~ mediator

FIGURE 3-10. Mediator Pattern Object Diagram

3.5.2 Hot-swapping by Using the Mediator Pattern

3.5.2.1 Rationale

The main idea of the Mediator Pattern is to de-couple the colleague objects from referring
to each other directly. The mediator works as a hub of communication (or so called active
lookup service) which handles all the message interactions between the colleagues. This
gives us a hint that we could use a mediator (S-ModuleMediator) in the hot-swapping sys-
tem to handle the messaging between S-Modules and non-S-Modules. Since non-S-Mod-
ules and S-Modules are designed not to refer to each other directly, the hot-swapping
transaction will take place only within the S-ModuleMediator and the Swap Manager.

Each S-Module has a unique identity which could be used to identify itself among others.

33

As shown in Figure 3-11, a hot-swapping application using the Mediator Pattern approach

includes a Swap Manager, several S-Modules. non-S-Modules, and a mediator called the

S-ModuleMediator.
S-ModuleMediator aS-Modulel
-y | ¢ mediator
N reference table I
/aClient \
I .—"T* 7—“>‘ [i |
\\ ,;;] SendMessagelnler%acc \
~ aS-Module2
+ <@———————® mediator

Swap Manager i

FIGURE 3-11. The Mediator Pattern Approach

The S-ModuleMediator has a table of references to all the S-Modules inside the applica-
tion. The table is searched by the identity of each S-Module. The S-ModuleMediator is
like a proxy for all the S-Modules. The difference between an S-ModuleMediator and an
S-Proxy (as in the previous Proxy Pattern approach) is that all the references to all the S-

Modules are centralized in one S-ModuleMediator, not in each S-Proxy.

The S-ModuleMediator has a service interface (SendMessagelnterface) for all clients (S-
Modules and non-S-Modules) when they want to interact with S-Modules. Each time
when a client wants to send a message to an S-Module, it has to call the S-ModuleMedia-
tor’s sendMessage method and pass-in the target S-Module’s identity and the required ser-

vice (the method name and its parameters). Then the S-ModuleMediator will lookup the

34

corresponding S-Module in its reference table and send the message to it. This lookup pro-

cedure will use the Java reflection [7] in order to achieve the goal of dynamic messaging.

A hot-swapping scenario in the Mediator Pattern approach looks like this:

o

L)

. The Swap Manager gets a message from its listening service. The incoming message

includes all the information about a new S-Module, including the identity. such as the
object ID of an S-Module which is going to be hot-swapped, the version of the S-Mod-

ule, and the code for instantiating objects, etc.

. After the security service finishes the authentication checking with a successful result,

the incoming new S-Module (the byte code) is instantiated to an S-Module object (here

we call it a new S-Module).

. The Swap Manager searches for the corresponding S-Module (here we call it the old S-

Module) with the specified identity in the S-ModuleMediator. and sends a message to
the S-ModuleMediator to block the new calls to this S-Module, and starts the timing

service.

. Then the Swap Manager checks with the S-ModuleMediator if the old S-Module is in a

swappable state. If no, which means it can not be swapped now, the Swap Manager will

wait until all the interactions with this S-Module finish.

. When the old S-Module enters the swappable state, the Swap Manager calls the S-Mod-

uleMediator to get the internal state of the old S-Module, and maps it to the state in the

new S-Module.

35

6. After the new S-Module has been successfully initialized, the Swap Manager issues a
hot-swapping transaction by changing the reference to the old S-Module in the S-Mod-

wleMediator with the reference to the new S-Module.

7. The timing service stops timing and checks if the transaction is finished within the
required time limit. If yes, this hot-swapping is successful. The Swap Manager releases

the blocked calls.

8. If during the step 4 to step 6, the timing service gets a time-out event, this transaction is
failed. The Swap Manager should send out a notification about this transaction and

release the blocked calls.

3.5.2.2 Known Issues

The Mediator Pattern approach takes advantage of java.lang.Class and the reflection API.
The mediator (here the S-ModuleMediator) has references to all the S-Modules’ Class
(java.lang.Class) instances. Once you have a reference to a Class instance. you have
access to a wealth of run-time information about that object’s class in the JVM. On the
other side, since the S-ModuleMediator has such a super power in an application, it must

be designed and implemented as robust and secure as possible.

3.5.3 Pros and Cons

The Mediator Pattern approach uses Java reflection heavily therefore it will suffer from

performance problem.

36

The Mediator Pattern trades complexity of interaction for the complexity of a centralized

control object. This can make the mediator itself a monolith that’s very hard to maintain.

The advantage is that it reduces the coupling between S-Modules. A S-ModuleMediator
replaces many-to-many interactions with one-to-many interaction between the S-Module-
Mediator and all the client objects and S-Modules. Hot-swapping an S-module is transpar-

ent to other S-Modules and objects.

Also. the Mediator Pattern approach makes dynamic messaging easy to handle.

3.6 Conclusions

In this chapter four approaches for designing the S-Module in an S-Application are dis-

cussed.

The Java Virtual Machine approach goes deep into the implementation of a virtual

machine and sacrifices the platform independency which we definitely want to avoid.

The Observer Pattern approach is useful in notifying all the registered observers. But the
subject does not de-couple the observers with the S-Modules. Also the potential indirect
reference is very hard to control. However, the mechanism of notification could be

adopted by other approaches.

The Proxy Pattern approach seems to be more reasonable than other approaches. It also
could have the functionality of dynamic messaging. However, it is based on the assump-

tion that the S-Proxy is not swappable.

37

The Mediator Pattern approach centralizes the control of all the S-Modules which in turn
makes the mediator complex to maintain. The mediator has a simple interface for clients
to call but use the Java reflection heavily. The disadvantage of this approach is the ineffi-
ciency caused by using Java reflection, thus is not suitable for pertormance critical appli-

cations.

Nothing comes for free. The trade-off between flexibility and efticiency is application
dependent. As in a small application like the Modular SNMP project, the Proxy Pattern
approach could be a better choice. By comparison these potential approaches. the Proxy
Pattern approach appears to be more promising than the others. Because of its simple
structure and easy maintenance, the Proxy Pattern approach is chosen as the best candidate
to be deployed at the current stage of research. However, as the research of hot-swapping
goes on, other new approaches or mixed approaches may show up. In this thesis, the Proxy

Pattern approach is selected to be developed in detail. and is described in the next chapter.

38

Chapter 4 Designing S-Modules by

Using Proxy Pattern

This chapter provides a framework for designing of Java programs with S-Modules. It
specifies the general rules for designing and implementing S-Modules and the correspond-
ing S-Proxies by using the Proxy Pattern approach. Figure 4-1 defines the research target

and environments.

NC ~ | Network
S-Application : :
r Ngn .. {S-Component -
f on | _ X |
| S-Modulcr——J‘ S-Proxy B S-Module
.

Swap Manager
J Y
1

} ‘S-Component | 2
S-Component I~
S-Proxy <iS-Module -'g
L 2
] NC
“ NC
/ / tYl - \
othe
Disk Vo System
device Resourc

FIGURE 4-1. Designing S-Module by Using Proxy Pattern

39

As shown in Figure 4-1, each S-Application program is composed of S-Components (an
S-Component is made up of an S-Module and its S-Proxy) and non-S-Modules, it also has
a Swap Manager which monitors and controls all S-Components. S-Components interact
with each others as well as with non-S-Modules. In this chapter, we concentrate on the
research of designing an S-Module and its S-Proxy. The Swap Manager is also an impor-
tant component of the program, but we will not address all aspects of the Swap Manager in
this thesis. The basic functions of Swap Manager are described. but not in a detailed fash-
ion. S-Modules could also interact with its environments through JVM (not drawn in the

tigure), we identify the following resources which an S-Module may access:

¢ Disk and files,

Other /O devices. such as serial ports,

System resources, such as timers, and

Network resources. such as sockets.

4.1 Logical View

Java is a real OO language, an application program written in Java is made up of classes
and class instances. A logical view depicts the relationship between classes of a program.
Figure 4-2 is a general logical view for any program which has S-Components (S-Module

and S-Proxy) inside.

40

r . . T - - - - — == - — — — = a
S-Component

$-Main
swapManager

|

|| S_ModuleSuper S_ProxySuper l
l |
i

!

|

T T T

S_ModuleTypeX

S_ProxyTypeX l«@¢—{ Swap_Manager ApplicationMain

| 5 main()

? % \j //

i - — ~
ConcreteS_ModuleTypeX ’
I ‘ ! helper classes

Note: Shadowed classes are framework classes and
will be defined in this chapter.

J

FIGURE 4-2. Logical View of Programs with S-Modules

An S-Application program should have one and only one class instance which has the
main() method implemented. The class. called ApplicationMain class (in fact. the designer
can choose any name he/she wants). should inherit from a super class called S_Muin
which will initialize the program to accommodate S-Components. The S_main class is

provided by the hot-swapping framework.

The S_Main class instantiates one and only one instance of the Swap_Manager class and

calls the start() method on it. The Swap_Manager class is derived from the
java.lang.T?xreadl class. When the srart() method is called on the instance of the
Swap_Manager, a Swap Manager thread will start running separately from the main

thread. The Swap_Manager will keep running until the termination of the program. It is

1. java.lang.Thread is from Java core API of Sun Javasoft.

41

the Swap Manager that handles all the hot-swapping transactions. The Swap_Manager

class and its implementation is provided by the framework.

In an S-Application program there can exist multiple instances of an S-Component (which
includes an S-Module and an S-Proxy). The design of a concrete S-Module, as shown in
Figure 4-2. follows a three level class hierarchy: an S_ModuleSuper class. an

S_ModuleTvpeX class, and a ConcreteS_ModuleTypeX class.

e The S_ModuleSuper class is an abstract class which defines all the attributes and com-
mon interfaces for all S-Modules. It is the highest level class in the S-Module class
hierarchy. It is the root for any S-Module in the scope of the Proxy pattern approach. A

definition of the S_ModuleSuper class is given later.

e The S_ModuleTypeX class is an abstract class for all S-Modules of the same type (type
X) such as the SNMP security S-Modules. It inherits from the S_ModuleSuper class
and defines the common behavior interface for the same type (type X) of S-Modules to

implement. Rules for designing such a class are given later in this chapter.

e The ConcreteS_ModuleTvpeX class is a concrete class and is the lowest level in the S-
Module class hierarchy. It inherits from the S_ModuleTypeX class and implements the

behavior interface of that type ot S-Module.

The S_ModuleSuper class is provided by the framework, but it is the software designer’s
duty to design the S_ModuleTypeX class and implement the ConcreteS_ModuleTypeX by
complying the rules described in this chapter. A mechanism should be invented to publish
the S_ModuleTypeX interface, so that it is available to public. The research on this issue is

far beyond the scope of this thesis, and will not be addressed here.

42

In contrast to the S-Module, the S-Proxy classes have only two levels: an S_ProxySuper
class and an S_ProxyTypeX class. The S_ProxySuper class is an abstract class which
defines the common attributes and interfaces for all the S-Proxies. For the same type of S-
Modules, such as S_ModuleTypeX, there will be one corresponding S-Proxy such as the
S_ProxyTvpeX class. The S_ProxyTypeX class is derived from the S_ProxySuper class. It
provides the same behavior interface as the corresponding S_ModuleTvpeX does. Any
access to the S-Module is done through the corresponding S-Proxy, only the S-Proxy has a

handle to the S-Module object.

The S_ProxySuper class is provided by the tramework. [t is the software designer’s duty to
design and implement the S_ProxyTvpeX class. Generally, The S_ModuleTvpeX class and

S_ProxyTypeX class should be provided in pair.

Other helper classes in the application program are normal java classes constructing the
program. They will not be affected by the S-Module designing rules, and will not be dis-

cussed in detail here.

4.2 Rules for Designing An S-Module

As discussed in Section 3.1 , an S-Module should have certain characteristics, such as
identity, service, internal state, dependency list, mapping rule, persistence and administra-
tion interface, etc. In this section, we will specify the rules for defining and implementing

those characteristics.

43

4.2.1 Identity

An S-Module has a unique existence within a certain scope of the software society. The
definition of the identity of an S-Module employs a layered structure. An S-Module can be

uniquely identified by the combination of the following three attributes:
» Swapping model type,
» S-Module type. and

e S-Module descriptor.

A class definition for the S-Module identity looks like this:

public class SModuleldentifier {
private String swapping model_type = “Proxy”;
private String s_module_type = “”;
// S-Module descriptor
private SModuleDescriptor descriptor;
.../ /accessor methods

}

As a general rule, S-Modules are swappable only it they have the same Swapping model

type and the S-Module type.

4.2.1.1 Swapping Model Type

As we discussed in previous chapter, there are different approaches towards the goal of
software hot-swapping, such as the Observer Pattern approach, the Proxy Pattern
approach, the Mediator Pattern approach, etc. Different approaches define different hot-

swapping models. A String type variable will be used to represent those different models.

For the Proxy Pattern model. the one we specify in this chapter, the swapping model type

is “Proxy”.

4.2.1.2 S-Module Type

A String type variable will be used to represent the type of S-Module to which a concrete
S-Module belongs. For example, the S-Module type of a security module in an SNMP v3

application will be “SNMPv3 Securitv Module™.

4.2.1.3 S-Module Descriptor

An S-Module descriptor is used to identify a concrete S-Module of a certain type. It is

made of:

e Name of this concrete S-Module. a String type variable such as “User Based Security

Model Module™.
 Version number of this concrete S-Module. a String type variable such as “v/.1.0",

» Name of the vendor, a String type such as “SCE of Carleton Univ". and

Date of release, a String type such as */999-05-01".

A class definition for the S-Module descriptor looks like this;

public class SModuleDescriptor{
private String name; // “User-based Security Model
Module”;
private String version; // ”"v1.1.0”";
private String vendor; // "SCE of Carleton Univ”;
private String date; // ”1999-05-01";
/ /accessor methods

45

4.2.2 Service

An S-Module provides a set of services which show the behavior or functionality of the S-
Module. There exist two types of service provided by an S-Module represented as Behav-
iorinterface and SwappingServicelnterface. The Behaviorinterface specifies the functions
which can be accessed by other modules (through the corresponding S-Proxy) in the pro-
gram. The SwappingServicelnterface is a framework defined interface, which allows oth-
ers (the Swap Manager and the corresponding S-Proxy) to retrieve and set internal states/
attributes of this S-Module. The SwappingServicelnterfuce is also defined as the adminis-

tration interface in Section 3.1 . It is mandatory to be implemented by any S-Module.

4.2.2.1 BehaviorInterface

An S-Module has some kind of behavior when interacting with other S-Modules and its
environment. S-Modules of a certain type should have the same common behavior (called
published behavior). although different concrete S-Modules may also provide other spe-

cific behaviors (called vendor specific behavior).

The published behavior of an S-Module is specified in an abstract interface called the
Behaviorinterface. S-Modules of the same type, such as the S_ModuleTvpeX. must imple-
ment the same interface of that type, such as the BehaviorinterfaceTypeX, although the

implementations in different concrete S-Modules are usually different.

An example of the BehaviorInterfaceTypeX class is listed as follows:

46

// example: published behavior for a security S-Module
public interface BehaviorInterfaceTypeX {

public Object encryption ();

public Object decryption ();

The vendor specific behavior of an S-Module is implemented by each concrete S-Module.
Since different versions of the same type S-Module may provide different vendor specific
behavior, which are not defined in the common Behaviorinterfuce. an S-Module must
have the ability to deal with the exceptional situation when a call is made to a method that
does not exist in this version but may be supported by another version. This is done by

implementing an interface called DoesNotUnderstandinterface.

public interface DoesNotUnderstandInterface(
public Object doesNotUnderstand (
String methodName,
Object([] args);

The DoesNotUnderstandInterface defines a method called doesNotUnderstand() which
accepts the name of the vendor specific method and the necessary parameters as the
method arguments. The implementation of this method could be very simple such as do
nothing, or could be very complex. We only provide the interface deftnition, but will not
give any guideline for how to handle an unknown method call. The implementation will

be highly vendor dependent.

This interface is mandatory to be implemented by any S-Modules.

47

4.2.2.2 SwappingServicelnterface

The SwappingServicelnterface is an abstract interface that defines the methods which are
used by the Swap Manager or the corresponding S-Proxy during a hot-swapping transac-

tion. The following methods have been defined in the SwappingServicelnterfuce:

The getldentifier() method returns the identity information of the S-Module.
e The getStare() method returns the current state of the S-Module.

o The getAttributes() method (with no argument) returns all the information about the

attributes of the S-Module.

e The getAttributes() method (with the S-Module version in string type as argument)
returns the information about the attributes in the required format as specitied in the
passed-in version. (There is a limitation to this method. which will be discussed in Sec-

tion 4.2.5)

o The mappingAttributes() method takes an S-Module attributes as argument and maps
the passed-in attributes with the ones defined in this S-Module. A detailed discussion

about mapping attributes of different S-Modules is described later.

A definition of the SwappingServicelnterface is as follows:

public interface SwappingServiceInterface{

public SModulelIdentifier getIdentifier();

public String getState();

public SModuleAttribute getAttributes();

public SModuleAttribute getAttributes(
String sModuleVersion) ;

public void mappingAttributes (
SModuleAttribute attributes);

48

4.2.3 Internal State

An S-Module has a finite number of internal states. None of these internal states will last
indefinitely. Currently, five internal states are identified for an S-Module: [Initializing,
Swappable, Swapping, Busy and Blocked. An S-Module will use the access methods
defined in S-ModuleSuper class to get and set its internal states accordingly (see Section
4.4.1).The hot-swapping transaction will take place if and only if an S-Module is in its

swappable state.

4.2.3.1 Initializing State

In this state, an S-Module is being loaded into the program. and its internal data structures
being initialized. After the initialization. the S-Module will set itself to the Swappable

state by using the setSModuleState() method.

4.2.3.2 Swappable State

An S-Module enters the swappable state when it is idle. which means an S-Module is nei-
ther being called nor is it calling others, or actively using any system resources currently.
Although it could be holding some system resources such as files, /O devices, sockets
etc., the S-Module is not using them to perform any operations at the time. Only in this
state can a hot-swapping transaction take place immediately. After being swapped out the

S-Module will be garbage collected later.

49

4.2.3.3 Busy State

[n this state. one or more methods of an S-Module are being called by other modules in the
program, but the S-Module itself is not requesting any service from other modules or sys-

tem resources.

4.2.3.4 Blocked State

[n this state, the S-Module itself is calling other modules of the program. or using the sys-
tem resources. and waiting for the completion of the operations. If an S-Module just sim-
ply holds system resources such as opened files. but is not using it such as reading/writing

data from/into file, it is not in the Blocked state, it is in the Busy state.

4.2.3.5 Swapping State

When an S-Module is in either the Busy state or the Blocked state. and receives a request
to be swapped. the S-Module is forced to enter the Swapping state. In the Swapping state
the S-Module should either continue its normal operations or be asked to terminate its ser-
vices in a safe way and release the system resources it holds. After that, the S-Module

enters the Swappable state.

4.2.3.6 State Diagram

Figure 4-3 depicts the state transitions of an S-Module. When an S-Module is first loaded
or swapped into the program, it will enter the /nitializing state. After initialization, the S-

Module enters the Swappable state which is in fact in idle and waits for service requests

(method calls). When one or more services of the S-Module are requested (methods ure
called). it enters the Busy state until the requested services are completed and goes back to
the Swappable state again. In the Busy state. it may enter the Blocked state in which the S-
Module is waiting for other modules or system to complete its service requests. As a gen-
eral rule. any S-Module should not stay in the Busy and/or the Blocked state in an infinite
time. which will block the whole hot-swapping transaction. Many programming technolo-
gies can be used to avoid a certain software module being in the Busy or the Blocked state
forever. for example, instead of using the blocking model TCP socket. we can design the

system to use the non-blocking model of TCP socket (a call back function is needed).

start

p I Service request o e
(\Q_Nlmtmhzmg) S » (Busy) resource aceess
'/— /.’ i .\\

1 - /18

| /4—/ |1 ~complete P
complete o ‘
swap §canccl\“

\'Swappable) | wap (Blocked)
V 4

0,
< mp/e(e P - Cancel
; rre/f_,ase Swapping

FIGURE 4-3. State Diagram

An S-Module can enter the Swapping state from the Busy state or the Blocked state. When
entering the Swapping state from the Busy or the Blocked state, the S-Module can continue
the current services normally or terminate them in a safe way. The S-Module can go back
to the Busy or the bloCked state from the Swapping state upon the cancellation of a swap-

ping transaction.

Upon the success of a swapping transaction, the swapped-out S-Module will be garbage
collected from the Swappable state, and the swapped-in S-Module will enter its Swappa-

ble state (through /Initializing state).

4.2.4 Dependency List

An S-Module has a dependency list which records all the S-Modules that this S-Module
depends on. Before an S-Module can be activated, all the S-Modules that it depends on
must have been loaded into the program (in a certain order, this will be handled by the

Swap Manager).

public class DependencyList
Vector dependencyList;//a list of dependents
Vector getDependencyList();
void addDependent (SModuleIdentifier id);

}i

Each S-Module which is being depended on is identified by the S-Module identity. A
wildcard can be used to specify a group of S-Modules. For example. “SNMPv3 Security™
S-Module A depends on S-Module B (type = “Authentication”, version = “vI[.].*"), this

means S-Module B from version v1.1.0 to version v1.1.9 can be used.

When the Swap Manager loads S-Modules, it needs to derive the loading order and to
check the deadlock condition by drawing a dependency map for involved S-Modules. We
use an arrow line to represent a dependent relationship. If S-Module A depends on S-Mod-
ule B, an arrow line is drawn from A to B. At any time, if a circle can be found in the map,
the deadlock happens. Starting from one S-Module, goes along one arrow line to another

S-Module (according to the direction of arrow). Repeating this procedure for each S-Mod-

wy
~

ule on the road, if reaching the starting S-Module again, a circle is found and that’s a dead-
lock condition, Figure 4-4 gives an example of a dependency map and shows a deadlock

condition.

S-Module A x
~ 7 TN /" deadlock N\
A/fdeadlock \ ‘\ \ N |

S-Module B (4) A ST Modue
/ \ "
S-Module D (3)

oo —

S-Module E (2)

— — p Depends on

- -

S Deadlock condition
S-Module F (1) .
(2) Loading order

FIGURE 4-4. Dependency Map and Deadlock Condition

As a general rule, if and only if no deadlock condition in a dependency map exists. the

involved S-Modules can be swapped into the program.

It is also the Swap Manager's duty to find out the loading order of S-Modules through the
dependency map. As in the above figure, if we only take S-Module B, D, E and F into con-

sideration, then the correct loading order should be: F, E. D and B.

The research and analysis of the algorithm used to calculate deadlock condition and load-

ing order is beyond the scope of this thesis, and will not be addressed here.

4.2.5 Mapping Rule and Persistency

One of the challenging issues in the hot-swapping transaction is to translate the attributes
from one S-Module to another S-Module. The attributes are in fact the class or instance
variables of a certain concrete S-Module. In order to maintain the persistency during the
hot-swapping transaction, sometimes it is necessary to map the attribute values from the
“old™ S-Module to the “new” S-Module. The attributes of two S-Modules may have dif-
ferent quantities and different types. Not all the attributes are needed to be mapped during
a hot-swapping transaction. The selection of attributes being mapped is S-Module depen-
dent and also vendor specific. However. a general guideline for the mapping rules is given

below:

» For attributes of the Java primitive types. such as int, byte, short, long, float, double,
char, and boolean types, the mapping rules are straight forward: 1) the value of the
attribute could be assigned directly to the primitive type attribute of another S-Module.
or 2) by applying some calculations, map the attribute to the primitive type attribute of

another S-Module.

// for example:

int S_Modulel_counter;

int S_Module2_counter;

// mapping

S_Module2_counter = S_Modulel_counter;

e For attributes of the class type, including the class types defined in the Sun’s Java core
class library and other helper classes, the attribute is a reference to an instance of a cer-

tain type of classes. During a hot-swapping transaction, this attribute could be assigned

54

to another S-Module’s attribute which is of the same class type or of its super class

type.

// for example:

String S_Modulel_str;

String S_Module2_str;

// mapping

S_Module2_str = S_Modulel_str;

» For attributes of a certain class types, such as those holding system and network
resources. since the S-Module is in a swappable state the references to these resources
could be copied to the new S-Module's attributes of the same type or the resource could

be released without affecting the service of the S-Module.

// for example:

Socket S_Modulel_socketl;

Socket S_Modulel_socket2;

Socket S_Module2_ socket;

// mapping

S_Module2_socket = S_Modulel_socketl;
S_Modulel_socket2.close();

There are three cases of attributes mapping:

* a mapping from an S-Module to the same type of S-Module with a newer version from

the same vendor.

» a mapping from the current S-Module to the same type of S-Module with an older ver-

sion from the same vendor

e a mapping between S-Modules from different vendors.

55

There are be different approaches to handle the attributes mapping. In this section we dis-
cuss two approaches: one is that an S-Module handles the mapping by implementing the

mapping rules inside, the other approach is that the Swap Manager handles the mapping.

4.2.5.1 Mapping Rules Inside the S-Module

In this approach the mapping rules have been hard coded inside each S-Module. When the
Swap Manager calls certain methods on the S-Module, the attributes are mapped automat-

ically. The mapping rule is transparent to the Swap Manager.

A method in the SwappingServicelnterface called mappingAtribures() must be imple-
mented to solve the mapping from an S-Module to a newer version. When the Swap Man-
ager calls this method on a newer version S-Module, it passes in the attributes of the old
version S-Module. It is the newer version S-Module’s responsibility to recognize and map

these attributes to its new attributes according to the mapping rules.

A method called getArtributes() (with the previous version of S-Module as an argument)
can be implemented when there is a need to swap backwards to any previous version of
the S-Module. The Swap Manager will call this method to retrieve the attributes in the
form of any requested previous version, which is passed in as an argument. An S-Module

must define and implement all the mapping rules for mapping to each previous versions.

There is a restriction to this approach, an S-Module must know the design of its previous
versions so that it can implement mapping rules associated with them. This is only possi-

ble when different versions of S-Modules are from the same vendor.

4.2.5.2 Mapping Rules Outside the S-Module

Another approach is to free the S-Module from implementing all the mapping rules espe-
cially in the case of mapping backwards, or to map between different vendor’s S-Modules.
Since different vendors can provide different versions of S-Modules, it is impossible to
have S-Modules of different vendors to implement the mapping rules for each other. In
this case. the Swap Manager will retrieve the attributes of the current running S-Module,
apply a certain mapping rule in order to convert them to a required format and assign them
to the new attributes of the new S-Module. The Swap Manager should be able to set the
mapping rules manually, for example through an user interface. so that it can handle all

mapping cases.

One drawback of this approach could be a complicated design of the Swap Manager. also
it will take longer time for the processing of a hot-swapping transaction at run-time.
Another limitation of this approach is that it can hardly be used in the embedded system.

where providing a user interface is almost impossible.

4.3 Rules for Designing an S-Proxy

An S-Proxy provides interfaces for the clients of this S-Component as well as interfaces
for the Swap Manager. We define clients as other S-Modules or non-S-Modules which
want to use the services of an S-Module. Only the S-Proxy has a reference to the corre-
sponding S-Module. The clients can only contact the S-Proxy when they require the ser-
vices of the corresponding S-Module. In other words, as long as the S-Proxy remains

static, the existence of the corresponding S-Module is transparent to its clients.

57

An S-Proxy should have the following features:
e Attributes
e Interfaces for clients

e Interfaces for the Swap Manager

4.3.1 Attributes

An S-Proxy has several attributes which indicate the status of the corresponding S-Module

and could be used by the Swap Manager to control the access to the S-Module.

* An object reference to the corresponding S-Module: An S-Proxy has one and only one
reference to the current S-Module. During a hot-swapping transaction. this reference
will be changed to refer to the new S-Module object. The value (object handle) of this

reference should not be passed out of the S-Proxy to any clients at any time.

e A boolean type condition variable named not_in_swap: If not_in_swap is TRUE. which
means that the S-Module is not marked to be swapped, then all the clients (in a multi-
threading application it refers to all the clients in all running threads) of this S-Compo-
nent could call the methods in the Behaviorinterface and the NewBehaviorinterface, it
is the S-Module’s responsibility to handle the concurrence issue: if not_in_swap is
FALSE, which means that the Swap Manager has marked the S-Module to be swapped
some time later, then all the calling threads coming afterwards will be blocked at the S-
Proxy until the hot-swapping transaction is finished and the Swap Manager sets the
condition variable to be TRUE again. The value of this condition variable could only be

changed by the Swap Manager.

58

4.3.2 Interfaces for Clients

4.3.2.1 BehaviorInterface

An S-Proxy must implement the same published Behaviorinterface as the corresponding
S-Module, such as the BehaviorinterfaceTypeX. The implementation of the methods in the
BehaviorinterfuceTvpeX first checks the condition variable not_in_swap. If not_in_swap
is TRUE then it forwards the calls from the clients to the corresponding S-Module; if
FALSE, the newly incoming calls will be blocked until the condition variable becomes

TRUE.

4.3.2.2 NewBehaviorInterface

service interfaces which are not documented by the common Behaviorinterfuce. thus is
not published and supported by the S-Proxy. In order to invoke these un-published meth-
ods of an S-Module. a specific interface will be defined in the S-Proxy so that the S-Proxy
can invoke dynamic methods on the corresponding S-Module at run-time. This interface is

called NewBehaviorinterface.

The NewBehaviorInterface allows client objects to send dynamic messages (make method
calls) at run-time to the methods which do not exist at the compile time in the Behavior-

Interface of the corresponding S-Component (S-Module and S-Proxy).

Java, unlike other languages such as Smalltalk, does not permit a method to be invoked

that doesn’t actually exist, with the resulting error trapped in a doesNotUnderstand

59

method. This so called dynamic messaging is not possible in Java, as all methods are type-

checked by the compiler [6].

However, with the power of Java reflection APIs [7], [8], [9], we can add a dynamic mes-

saging functionality by implementing the NewBehaviorinterface in the S-Proxy.

The java.lang.reflect package gives us the ability to identify all of the members that are
associated with an object (field members and method members) and makes it possible for
that object to interact with them. For each S-Module, all the methods and the fields could
be checked and retrieved at run-time. If a required method is not found an exception will
be caught by the S-Proxy and the exception is handled by the DoesNotUnderstandinter-

face of the corresponding S-Module.

The NewBehaviorinterface is an interface for the external client objects to send dynamic
messages to the S-Proxy. The client objects can call the newBehaviorMethod() and the call
will be passed to the new S-Module’s requested method with the required method name

and the parameters.

The implementation of the NewBehaviorinterface will first check the condition variable.
[f TRUE, it then checks whether the required method (with the passed-in method name
and the arguments) is supported by the corresponding S-Module class. If yes the call is
passed to that method of the S-Module. If not supported by this S-Module, the call is sent
to the DoesNotUnderstandinterface of the S-Module. If the condition variable is FALSE,

this call to the NewBehaviorInterface is blocked temporally.

60

A definition of the NewBehaviorinterface looks like this:

public interface NewBehaviorInterface(
public Object newBehaviorMethod(String
methodName, Object[] args);

4.3.3 Interfaces for the Swap Manager

The Swap Manager will contact each S-Proxy through the following interfaces. The

implementation of these interfaces in each S-Proxy is mandatory.
4.3.3.1 Signallnterface

The Signallnterface is used by the Swap Manager to mark and un-mark an S-Module to be
swapped. The setCondition() method sets the condition variable not-in-swap to be TRUE

or FALSE. while the getCondition() method returns the value of not-in-swap.

A definition of the Signallnterface looks like this:

public interface SignalInterface {
public void setCondition(Boolean b);
public Boolean getCondition();

}

4.3.3.2 GetAttributesInterface

The GetAttributesinterface is used by the Swap Manager to retrieve the attributes of the
corresponding S-Module during a hot-swapping transaction. The implementation of this
interface in the S-Proxy forwards the call from the Swap Manager to the corresponding S-

Module’s getArtributes() method and return the necessary attributes to the Swap Manager.

61

A definition of the GetArtributesinterface looks like this:

public interface GetAttributesInterface ({
public SModuleIdentity getIdentifier();
public SModuleAttribute getAttributes();
public SModuleAttribute getAttributes(String
sModuleVersion) ;

}

4.3.3.3 SwapControllnterface

The SwapControllnterface should only be called by the Swap Manager. Through this
interface the Swap Manager controls the transaction of the hot-swapping procedure from
start to end. Security should be applied to ensure that only the Swap Manager can use this

interface.

The prepareSwap() method is used to mark the S-Module and block new calls when the
Swap Manager starts the hot-swapping transaction. [t returns TRUE when the S-Module
enters the swuppable state. The swap() method changes the reference to the old S-Module
in the S-Proxy with the reference to the passed-in new S-Module. The releaseCall()

method un-marks the S-Module and releases the blocked calls.

A definition of the SwapControllnterface looks like this:

public interface SwapControlInterface {
public boolean prepareSwap() ;
public void swap(S-Module newS-Module) ;
public void releaseCall();

}

62

4.4 Major Abstract Classes Definition

According to the discussion above, in this section we give the definition for three major
abstract classes in the hot-swapping framework, the S_ModuleSuper class, the
S_ProxySuper class, and the S_Main class. Also a guideline for the S_ModuleTypeX class

and S_ProxyTypeX is given.

4.4.1 S_ModuleSuper Class

The S_ModuleSuper class defines the interfaces that all the S-Modules must implement.

An example of the definition of this class looks like this:

public abstract class S_ModuleSuper implements
Swappable,
SwappingServicelnterface,
DoesNotUnderstandInterface (
static SModuleIdentifier sModulelID;
private DependencyList dList;
private String state = “Initializing”;
public SModulelIdentifier getSModuleID() {
return sModuleID;
}
public void setSModuleState(String s) {
state = s ;
}
public DependencylList getDependencyList () {
return dList;

}

public void setDependencyList (DependencyList 1) {
dList = 1;

}

63

4.4.1.1 Swappable

Swappable is an interface with no methods, thus no implementation is needed. The usage
of this interface in the S_ModuleSuper class is as a marker on any S-Modules to indicate

that an S-Module is a swappable component.

The Swap Manager can check if a software component is an S-Module by testing whether

it implements the Swappablelnterfuce.

4.4.1.2 SwappingServiceIlnterface

SwuppingServicelnterface is an abstract intertace described in Section 4.2.2.2 .

4.4.1.3 DoesNotUnderstandInterface

4.4.1.4 Attributes

Several attributes and their accessor methods are defined in the S_ModuleSuper class:

* A SModuleldentifier type variable called sModuleID, which keeps all the identification

information about an S-Module.

e A DependencyList type variable called dList, which stores the dependency list of this

S-Module.

e A String type variable called state, which indicates the current state of the S-Module

S N 1Y

such as “Initializing”, “Busy”, “Blocked”, “Swappable™ and “Swapping”.

4.4.2 S_ProxySuper Class

The S_ProxySuper class defines all the attributes and interfaces that all the S-Proxy

classes must implement. An example of the definition of this class looks like this:

public abstract class S_ProxySuper implements
NewBehaviorInterface,
SignalInterface,
GetAttributesInterface,
SwapControlInterface {

private S_ModuleSuper sm;

private Condition not_in_swap;

}

An explanation of the interfaces which the S_ProxySuper class implements is in Section
4.3.2 and Section 4.3.3 .The definitions of the attributes are described in Section 4.3.1

accordingly.

4.4.3 S_Main Class

The S_Main class is a super class from which an application class that has a main()
method inside should sub-class. The only thing defined in this class is the creation of an
instance of the Swap_Manager class. When an application class which derives from the
S_Main class starts up, a Swap Manager thread is generated and starts running. The Swap

Manager thread will stop execution when the main thread ends.

65

An example of this class looks like this:

public class S_Main {
private Swap_Manager swapManager;
public S_Main() {
swapManager = new Swap_Manager({);
swapManager.start ()} ;

4.4.4 S_ModuleTypeX

The S_ModuleTypeX class should inherits the S_ModuleSuper class and implements a
corresponding BehaviorlnterfaceTypeX. A template of the S_ModuleTypeX looks like

this:

public abstract class S_ModuleTypeX
extends S_ModuleSuper
implements BehaviorInterfaceTypeX {

4.4.5 S-ProxyTypeX

The S_ProxyTypeX class should inherits the S_ProxySuper class and implements the
same BehaviorInterfaceTypeX as the corresponding S_ModuleTypeX class. A template of

the S_ProxyTypeX looks like this:

public class S_ProxyTypeX extends S_ProxySuper
implements BehaviorInterfaceTypeX {
//implementation goes here

}

66

4.5 Component Diagram

In summary, the relationship between the Swap Manager, an S-Component (includes an S-

Module and its S-Proxy) is shown in Figure 4-5.

aS-Component 5
I
aS-Proxy f
reference ;
—|
/—x‘ ; t
Ty ‘ ‘ -
’\uCllent — Behaviorlnterface aS-Module
T . ac |
N~ ;. PSS NcwBehaviorinterface Behaviorlnterface
— - R Signallnterface .)
; L SwappingServicelnterface
—— - WO GetAttributesInterface
! ' i S— DoesNotUnderstandInterface
B SwapControllnterface !
| |
;
Swap Manager

FIGURE 4-5. Interfaces In an S-Module And Its S-Proxy

4.6 Sequence Diagram

A sequence diagram which focuses on the hot-swapping transaction between the involved
S-Modules, the corresponding S-Proxy, the Swap Manager, and a client object is shown in
Figure 4-6.

67

|
|
|

r | |
client | |Swap Manager| | S-Proxy oldS-Module ' newS-Module
|
behaviorMethod bj
| behaviorMethodg !
prepareSwapy) : ;
| < SctCondition(Falge) :
| | | saSure0 g |
| | | |
i I _ setState("Swapping!") ;
g I [if not”"Swappable'l] !
! ! "7 complete or ;
! X '<-l release resources i
f i _ callback when i
X IS tate = ablb”
| |< return True | state Swapp.nbl:.
| | (if “Swappabie™] : }
‘ setAttributesi) 1‘
T i getAuributest)
| | \
| } 5
| : mappingAttributes(oldAttributes) ;
!‘ ‘l i] o
L . swaptnewS-Module) t
i ‘ refeaseCall() H :
behaviorMethod() | ' |
, behaviorMethod() l f
i 5

FIGURE 4-6. Sequence Diagram

68

4.7 Scenarios

Once an S-Module has been hot-swapped. clients begin to interface with it. The following
sections describe three distinct scenarios that are possible after a hot-swapping transaction

takes place.

[t is worth mention again that Java can only do syntax checking, not semantics checking.
Therefore, if method A from the old S-Module and method B from the new S-Module
have the same syntax (both method name and parameters) but provide different service.

the Java Virtual Machine can not distinguish them.

4.7.1 New and Old S-Modules Have Same Behavior Methods

This is a simple scenario and should happen in most cases. The two versions of the same
type of S-Module support not only the exactly same Behaviorinterfuce but also the same
vendor specific behavior methods which can be invoked through the S-Proxy’s NewBe-
haviorinterface. After the hot-swapping. calls from clients are forwarded by the S-Proxy
to the new S-Module’s corresponding methods. The activity inside the S-Proxy will be the

same as with both the old and the new S-Module.

As shown in Figure 4-7, a client (aClient) sends a message to the S-Proxy (aS-Proxy) by
calling the SameMethod in the Behaviorinterface with parameter args. Then aS-Proxy for-

wards the call to the just swapped-in S-Module (newS-Module) directly.

69

aS-Component

-Proxy

reference

1

newS-Module l

/’,/
/"/w\
| aClient

l=B M vorinterface . T ™ =

NewBehaviorlnterface g Behaviorlnterface

Signallntertace
SwappingServicelnterface

B GetAttributesIntertace !
| DoesNotUnderstandInterface

SwapControllnterface

r
g ! Swap Manager
—#» reference to an object
- Message passing routine
| i ! : | |
| aClient ; aS-Proxy | ’ newS-Modulei
[;

T

ameMethod(cgs)
. someMethod(args) gy

FIGURE 4-7. New and Old S-Module Have Same Behavior Methods

70

4.7.2 New S-Module Does Not Have All Old S-Module Methods

As we discussed in Section 4.2.2.1 , an S-Module could have some vendor specific behav-
ior methods that are not included in the published Behaviorinterface. Therefore it is possi-
ble that the new S-Module does not support some of the vendor specific methods of the
old S-Module. or simply because the new S-Module requires ditferent parameters for a
particular method. However, the clients may not be aware of the difference between the
old and the new S-Module, so they may still call the vendor specific methods through the

NewBehaviorlnterface.

Figure 4-8 shows this scenario. Here. a vendor specitic behavior method of the old S-
Module is the oldMethod. aClient sends a message to the aS-Proxy through the NewBe-
haviorinterface giving the name of the required method (oldMethod) and arg as the
parameters. The aS-Proxy checks with the newS-Module and finds out that the newS-Mod-
ule does not support this oldMethod. Then the aS-Proxy sends a message to the newS-
Module’s DoesNotUnderstandInterface with the method name (oldMethod) and the
parameter (arg). From now on it is the newS-Module’s responsibility to diagnose and

make further decisions.

71

!
| aS-Component
i reference
| o \
aClient ‘ , |newS-Module
7 BehaviorInterface
. ~Niv.vBehav10rIn-:erEce- BehaviorInterface
Sl@amxteﬁnce -~ .
% S . .
GetAttributesinterface ‘ wappingServicelnterface
| SwapControlInterface DoesNotUnderstandInterface
I
i

A

Swap Manager
—#» reference to an object
I MIESSALE passing routine
: i ' : ‘
aClient 1 aS-Proxy | - newS-Module
: ' |

¢

check

newBehaviorMethod("oldMelm ".arg)
-l

doesNotUnderstand(“oldMethod™.arg)
|

FIGURE 4-8. New S-Module Does Not Have All Old S-Module Methods

4.7.3 New S-Module has methods that old S-Module does not

In this case, the new S-Module has added some new vendor specific methods. This sce-
nario is more likely to happen when the caller is also an S-Module that has been hot-

swapped.

As shown in Figure 4-9, the newS-Module has a new vendor specific behavior method
called newMethod which requires arg as the parameter. A client S-Module (here we call it
clientS-Module) sends a message to aS-Proxy’s NewBehaviorinterface with the name
newMethod and the arg. The aS-Proxy checks with the newS-Module. If the required new-
Method is supported by the newS-Module. the aS-Proxy invokes the newMethod on the
newS-Module with the parameter arg. If not, aS-Proxy forwards the call with the method
(newMethod) and the parameters (arg) to the newS-Module's DoesNotUnderstandInter-

Jface. Itis again the newS-Module’s responsibility to diagnose and make further decisions.

73

;-

clientS- ~ % <
Module i
|

aS-Proxy

reference

S Bchaviorlnterface

ﬂyx@l(gﬁ:

Signallnterface B

~

«

~

aS-Component 5

newS-Module |

Behaviorinterface ‘

SwappingServicelnterface

DoesNotUnderstandIntertace

f
;

Swap Manager

clientS-Module|

new B‘:hn!:iorhd:[hﬂdt "[](‘!!!Mﬁllﬁ[ﬂ

i aS-Proxy

*arg)

check method

invoke

—» reference to an object
—8 Mmessiage passing routine

newS-Module|

[if yes]

|

doesNotUnderstand("newMethod",ar‘)

[if no]

el

FIGURE 4-9. New S-Module Has Methods That Old S-Module Does Not

74

Chapter 5 Hot-swapping Application:

A Swappable SNMP Agent

This chapter demonstrates how to apply the hot-swapping framework as discussed in the
previous chapter to a real world application. An SNMPv3 agent in the traditional SNMP-
based communication network management system has been decomposed and re-con-
structed into an S-Module based S-Application. The advantages of modifying SNMPv3

network management system into a hot-swapping system are as follows:

¢ Although the SNMPv3 has already been implemented by several vendors and research
groups [10], it is still an immature standards track protocol and there remains many out-
standing minor questions of interpretation that are being ironed out and will continue to
be resolved for some time [11]. The requirements for dynamic upgrading or bug fixing
one or several subsystems in an SNMPv3 engine will remain in recent years. Modify-
ing such a system not only provides a test-bed for the hot-swapping framework, but

also has practical value in the real world.

e On the other hand, the SNMPv3 is a well modularized system - made up of several sub-
systems with pre-defined interfaces which describe the interactions between the mod-

ules. This modularized system architecture fits well into our hot-swapping framework.

75

Since this thesis concentrates on the research of software hot-swapping technology, not on
SNMP itself, we did not implement everything from scratch. Instead, the application of
the SNMP network management system is based upon an original Java implementation of
SNMPv3 from UQAM [12]. This implementation model is a modular approach [13] and

follows the interfaces as defined by the RFCs [15]. [16], [17], [18], [19].

In the following sections a brief overview of the SNMP architecture is first introduced.
then the design and implementation of an SNMP agent consisting of S-Modules is
described. Finally, the test cases on the swappable SNMP agent application and the test

results are discussed.

5.1 SNMP Architecture

5.1.1 Background Information

Since its first publication in 1988, the Simple Network Management Protocol (SNMP) has
become the most widely-used network management protocol on TCP/IP-based communi-
cation networks. SNMP defines a protocol for the exchange of management information, a
format for representing management information and a framework for organizing distrib-
uting systems into managing systems and managed agents. In addition, a number of spe-
cific data structures, called Management Information Bases (MIBs], have been defined as
part of the SNMP suite; these MIBs specify managed objects for the most common net-

work management subjects, including bridges, routers, and Local Area Networks (LANs)

[L1].

76

SNMPv 1 became both an open Internet Engineering Task Force (IETF) standard and a de
facto industry resulting from widespread market acceptance. A board range of vendors
implemented SNMP versions and extended the scope of SNMP in many directions,
including network management, system management, application management, manager-
to-manager communication, and proxy management of legacy systems. The most obvious
weakness of SNMPv is the lack of adequate mechanisms for security. such as the lack of
authentication and privacy mechanisms as well as an administrative framework for autho-
rization and access control. The IETF working group that developed SNMPv2 wanted to
include security functionality in the new version but was not able to reach agreement on

how to define the required security mechanism.

The third version of SNMP (SNMPv3) is derived from and builds upon both the first and
the second versions. The new IETF SNMPv3 working group has produced a set of Pro-
posed Internet standards published as RFCs 2571-2575 [15], [16]. [17], (18], [19]). This
document set defines a framework for incorporating security features into an overall capa-
bility that includes either SNMPv1 or SNMPv2 functionality as well. Also. the documents
define a specific set of capabilities for network security and access control. Meanwhile, it

is for the first time a modular SNMP engine is defined.

5.1.2 SNMP Architecture

All versions of SNMP (v1, v2, and v3) share the same basic structure and components,

and follow the same architecture. The SNMP framework emphasizes the use of modular-

77

ity for the evolution of portions of SNMP without requiring a redesign of the general

framework.

The SNMP architecture, as described in RFC2271[15], consists of a distributed, interact-
ing collection of SNMP entities. Each entity implements a portion of the SNMP capability
and may act as an agent, a manager, or a combination of the two. Each SNMP entity
includes a single SNMP engine and some applications. An SNMP engine implements
functions for sending and receiving messages. authenticating and encrypting/decrypting
messages. and controlling access to managed objects. These functions are provided as ser-
vices to one or more applications that are configured with the SNMP engine to form an
SNMP entity. An SNMP engine contains a Dispatcher. a Message Processing Subsystem,

a Security Subsystem and an Access Control Subsystem.

* The Dispatcher is a simple traffic manager. It sends and receives messages to/from the
network, determines the version of an SNMP message. interacts with the corresponding
Message Processing Model. and provides an abstract interface to SNMP applications
for delivery of a Protocol Data Unit (PDU). There is only one Dispatcher in an SNMP
engine.

e The Message Processing Subsystem is responsible for preparing messages for sending
and extracting data from received messages. An implementation of the Message Pro-
cessing Subsystern may support a single message format corresponding to a single ver-
sion of SNMP (SNMPv 1, SNMPv2, SNMPv3), or it may contain a number of modules,

each supporting a different version of SNMP [16].

78

e The Security Subsystem provides services such as the authentication and privacy of
messages. An implementation of the Security Subsystem may contain multiple Security
Models (currently defined User-based Security model (USM) [18] and future other
Security models). A security model defines the threats against which it protects, the ser-
vice provided and the security protocols used (procedure and MIB data) to provide the

service such as authentication and privacy.

e The Access Control Subsystem provides authorization services to control access to
MIBs for the reading and setting of management objects. These services are performed
on the basis of the contents of PDUs. An implementation of the Access Control Sub-
system may support one or more distinct access control models. So far the only defined

security model is the View-based Access Control Model (VACM) tor SNMPv3 [19].

5.1.3 User-Based Security Model

The User-Based Security Model for SNMPv3 [18] defines the elements of procedure for
providing SNMP message-level security. USM protects against following primary and
secondary threats: modification of information, masquerade, message stream modifica-
tion. and (optionally) disclosure. Two cryptographic functions are defined for USM:
authentication and encryption. USM allows the use of one of the two alternative authenti-
cation protocols: HMAC-MD5-96 and HMAC-SHA-96. USM uses the cipher block

chaining (CBC) mode of the Data Encryption Standard (DES) for encryption.

79

5.1.4 Abstract Service Interface

The services between modules in an SNMP entity are described as abstract service inter-
faces defined in the RFCs in terms of primitives and parameters. A primitive specifies the
function to be performed, and the parameters are used to pass data and control informa-
tion. As an example, Figure 5-1 shows the sequence of events in which an agent responds
to an incoming request. The figure shows how an incoming message results in the dispatch
of the enclosed PDU to an application. and how that application’s response results in an
outgoing message. Also the figure demonstrates how the primitives fit together. Note that

some of the arrows in the diagram are labeled with a primitive name, representing a call.

Unlabeled arrows represents the return from a call.

Command Dispatcher Message Security
Responder Processing Model
Application Model
rcgislchomcxlEngmcE
Lt Receive SNMP
Request Msg
from Network
prepareDataElements >
processincomingMsy >
-
-
processPdu
retumResponsePd&
prepareResponseMsg
| __generateResponseMsg >
et
-~
to Network

FIGURE 5-1. Command Responder

80

5.2 Swappable SNMP Agent

5.2.1 System Architecture

As mentioned in Section 5.1.2 . a traditional SNMP agent is composed of several SNMP
applications, such as Command Responder Application, Notification Originator Applica-
tion, and Proxy Forwarder Application, and an SNMP engine. An SNMP agent also has

some MIB implementations to support the management applications.

When an SNMP agent receives an incoming message, the Dispatcher accepts the message
trom the transport layer and routes it to the appropriate message processing module. The
appropriate message processing module processes each message header. and returns the
enclosed PDU to the Dispatcher if it is a v1 message. or, passes it to the appropriate secu-
rity model if it is a v3 message. In case of a v3 message. if required, the security model
checks the authentication code. performs decryption, and returns the processed message to
the message processing module. which then returns the enclosed PDU to the Dispatcher.

The Dispatcher then passes this PDU to the appropriate application.

Eor an outgoing response, the Dispatcher accepts a PDU from the application, determines
the type of message processing required (i.e., SNMPv1, SNMPv3) and passes the PDU on
to the appropriate message processing module in the Message Processing Subsystem. The
appropriate message processing module prepares the PDU for transmission by wrapping it
in the appropriate message header and returning it to the Dispatcher. In case of SNMPv3,

if security is required, the Message Processing System may pass the PDU to the appropri-

81

ate security model in the Security Subsystem for encryption and the Security Subsystem
may generate an authentication code and insert it into the message header. The processed
message is then returned to the Message Processing subsystem which in turn is returned to
the Dispatcher. Finally. the Dispatcher maps this message onto the transport layer for

transmission.

A swappable SNMP agent is an SNMP agent with a swappable SNMP engine (an SNMP
engine with hot-swapping capability). As shown in Figure 5-2, a swappable SNMP engine
is composed of a Swap Manager. a Dispatcher, a Message Processing Subsystem, a Secu-
rity Subsystem, and an Access Control Subsystem. The Swap Manager is the core compo-
nent in this hot-swapping system. The Swap Manager has access to all S-Components in
the SNMP engine. and is responsible for controlling hot-swapping transactions. Some
subsystems in the swappable engine have been re-constructed as S-Components and will

be detailed in the next section.

The tlow of processing SNMP messages inside a swappable SNMP engine is the same as
in a traditional SNMP engine. The existence of the Swap Manager is transparent to SNMP
applications. However, when the Swap Manager receives a hot-swapping request, it will
temporarily interrupt the service of the corresponding S-Components in order to conduct
the hot-swapping transaction. Meanwhile, other S-Components and non S-Components in
the SNMP engine are still in service. As soon as the hot-swapping transaction is finished
(completed or aborted), all the affected S-Components are released by the Swap Manager

and back in service.

82

i MIB Instrumentation | swappable SNMP agent |
l T v
Commaqd Rcsponder Notification Originalori Proxy Forwarder
Application Application 1 Application

\ \ A |

v swappable SNMP engine |

Dispatcher | Message Processing 1 ! Security Access Control |

i Subsystem | | Subsystem Subsystem ;

~ | Userbased 1 -

PDU Dispatcher | | | Security Model View-based | |

; - Access Controllf |

Message Dispatcher ; Model i
| |

i |

Transport Mapping
(e.2.RFC1906)

- Swap Manager |

ubDP

Network

Note: Shaded modules have been designed
as S-Modules

FIGURE 3-2. A Swappable SNMP Agent

5.2.2 S-Components

In the swappable SNMP agent, the following subsystems (or modules) have been targeted
and constructed as S-Components. These S-Components are shown in shaded boxes in

Figure 5-2.

83

* In the Message Processing Subsystem, both the VIMP (Message Processing version 1)
module and the V3IMP (Message Processing version 3) module have been designed and

implemented as S-Components.

e In the Security Subsystem, the UserSecurityModel (USM) as a module has been

designed and implemented as an S-Component.

¢ Inside the USM module, the MD5 module, the SHA module as well as the DES module

have been designed and implemented as S-Components.

Each S-Component is composed of an S-Proxy and an S-Module as defined in Chapter 4 .
For example. the MD5 module (an S-Component) is made of an S-ProxyMDS3 (an S-
Proxy) and an MD5Module (an S-Module). Only the S-Modules are swappable. As an
example. the MD5Module can be replaced with a S-Module of the same type. such as a
bug fixed or a function upgraded MD6Module. To make it simple. we only change the
identifier of each new S-Module. The algorithm in different versions of an S-Module

remains the same.

As discussed in Section 4.2 . an S-Module can have a dependency list which indicates all
the other S-Modules that this one depends on. In order to swap in a new S-Module, all the
S-Modules in the dependency list must have already been loaded into the system. To test
this feature, we had embedded a dependency list into a specific version of the UserSecuri-
tyModel (named as USM1 module). This dependency list intently restricts the UserSecuri-
tyModel to depend on a certain version of MDS module (named as MD6 module), SHA
module (named as SHA1 module) an DES module (named as DES1 module). So, in order

to swap in the USM1 module, all these modules must be swapped in as well.

84

Also, as discussed in Section 4.2 , an S-Module may have some attributes which must be
mapped to the new S-Module in order to keep the persistency. For example, the USM
module has an attribute which contains the handles to the authentication modules and the
encryption modules. This attribute is important, thus must be mapped to the new USM
modules. In this application we implemented the attributes mapping by embedding the

mapping rules inside the S-Modules, which was discussed in Section 4.2.5.1 .

5.2.3 Class Diagram

The design of the swappable SNMP agent follows the rules defined in Chapter 4 . Classes
are structured in a hierarchy to inherit the functionality of other classes and to hide the
details of different classes behind a common interface. Abstract classes are used to impose

a series of methods for the class that correspond to the implementation.

As an example. Figure 5-3 depicts a class diagram for the User-Based Security Model in
the swappable SNMP agent. The diagram shows the relationship between a S-Module
class and its S-Proxy class. Java classes and interfaces are designed by following the rules
specified in Chapter 4 . The super class of all S-Module classes is the S_ModuleSuper
class, and the super class of all S-Proxy classes is the S_ProxySuper class. In Figure 5-3,
the SnmpModule class and the SecurityModel class together correspond to the S-Module-
TypeX class, the S_ProxySnmpModule class and the S-ProxyUSM class together corre-
spond to the S-ProxyTypeX, the BehaviorlnterfaceSecurity class corresponds to the
BehaviorInterfaceTypeX class, and the UserSecurityModel class corresponds to the

ConcreteS_ModuleTypeX class.

85

Both the SecurityModel class and the S-ProxySecurityModel class implement the inter-
face BehaviorlnterfaceSecurity. New classes of different versions of the User Security
Model should also derive from the SecurityModel class, thus inherit all the methods from
the S-ModuleSuper and should implement all the methods declared in the Behaviorlner-

faceSecurity interface.

Java.ang.Object

T

< S_ModuleSuper S_ProxySuper“}»
| SnmpModule i S_ProxySnmpModule‘;

<<interface>> .
‘BehaviorlnterfaceSecurity
L — —_——— = — o

T

SecurityModel * S_ProxySecurityModel :

- T
i |
| |

| f
! UserSecurityModel S_ProxyUSM

Note: shadowed classes are from the hot-

swapping framework, classes with * are
abstract classes, dashed boxes indicate java
interfaces

FIGURE §-3. Swappable SNMP Agent Class Diagram (User-Based Security Model)

86

5.3 Tests and Results

The swappable SNMP agent application is set up on two separate machines. One repre-
sents an SNMP manager (hereby called manager) listening at port 10000. and the other

represents a swappable SNMP agent (hereby called agent) listening at port 161 (Figure 5-

4).
. SNMP Manager - Swappable SNMP Agent
— —
¥ __;g | f-——U
/l———*f [P:134.117.57.177 / IP:134.117.57.176
Port: 10000 Port:161
network

FIGURE 5-4. Test System Environment

For the initial contact. the manager sent a broadcasting message in the SNMPv3 format
(with no security) to the agent. When the agent gets this initial message. it retrieves the
information about the manager, such as the IP address, the engine ID, engine boots, engine
time, etc. from the message header. In order to support SNMPv3 format messaging, both
the manager and the agent should be configured to the same user list which will be used by
the USM security module. The USM module can configure users into three categories: no
security, with authentication (MDS/SHA), with both authentication (MD5/SHA) and

encryption (DES).

After the initialization and configuration, the manager may send SNMP request messages

(in SNMP v1 or v3 format) to the agent giving the object ID (OID). The agent responds to

87

the request and processes security check on the incoming message. If it passes, the agent
then gets the value of the requested OID from the local MIB implementation. encapsulates

the data in an SNMP response message and sends it back to the manager.

When the agent starts up, the Swap Manager which sits inside the agent starts running in a
separate thread. The Swap Manager has a user interface which displays a list of the S-
Components currently in the agent. a list of new S-Modules which are available to be
swapped into the agent, and a list of new S-Modules selected from the new S-Module list
and will be swapped into the system within one transaction. The Swap Manager controls
the hot-swapping transaction by committing the transaction or aborting it at any stage. The

transaction steps are recorded and displayed on the Ul

The tests on hot-swapping transaction take place within the agent while it is processing

messages from/to the manager. Several cases have been tested. these include:

e hot-swapping a single independent S-Module, for example. replacing the MD5 module

with the MD6 module;

» hot-swapping a group of independent S-Modules. for example, replacing the MD3

module and the DES module together with the MD6 module and DES | module;

e hot-swapping an S-Module which has a dependency list of other S-Modules, for exam-
ple, replacing the USM module with the USM1 model (which depends on MD6, DES|,

and SHA1).

Two timers are used to evaluate the hot-swapping transaction. Timer!1 tells how long a hot-
swapping transaction takes place. It records the time period from a transaction request is
issued to the Swap Manager to the point when the system is back to full function with the

88

new S-Modules. Timer2 records the actual period which the system has been affected.

During this time, parts of the system (the selected S-Modules) have been blocked and tem-

porally out of service while the other parts are always in service.

The activities which relate to a hot-swapping transaction are as follows:

L.

9

The Swap Manager gets a hot-swapping request from its Ul input. It reads in all the
selected new S-Modules which are requested to be swapped in within a single transac-

tion. It also starts the Timerl.

. The Swap Manager checks with each selected new S-Module to see if there are any

other S-Modules that this S-Module depends on. If it has. the Swap Manage checks to
see if these S-Modules are in the system already. [f the S-Modules that this new S-Mod-
ule depends on have not been loaded into the system yet, the Swap Manager checks
with the list of all available new S-Modules. If the S-Modules that this S-Module
depends on are in the list. then they are added to the selected S-Module list, and will be
loaded within the same transaction but right before loading this new S-Module. Other-

wise, this transaction can not go on and will be aborted by the Swap Manager.

After reorganizing the selected new S-Module list, the Swap Manager asks the corre-
sponding S-Proxies to prepare swapping, which in turn block all new calls to the cur-
rent S-Modules. The Timer2 is started at this time. If the current S-Module is in the
swappable state, the Swap Manager will get the attributes from the current S-Module

and map them into the corresponding new S-Module.

. When all the related S-Proxies have prepared for the swapping and all the attributes

have been mapped to the new S-Modules, the Swap Manager will swap in the new S-

89

Modules and swap out the old ones. If any of the S-Modules failed the preparation and

attributes mapping, the whole transaction fails too.

W

After the swapping, the Swap Manager asks all the corresponding S-Proxies to release

the blocked calls, and stops the Timer2. The S-Modules are ready in service again.

6. The Swap Manager makes some clean up to be ready for the next transaction and stops

the Timerl. This hot-swapping transaction is completed.

The test results show that the SNMPv3 agent was not shut down due to the hot-swapping
transaction. During the hot-swapping transaction some parts of the message processing
(depends on which S-Module was chosen to be swapped) at the agent side had been
momentarily blocked by the swap manager. other parts of the agent was still running and
processing messages. Therefore the communication between the manager and the agent
was not terminated by the hot-swapping transaction. The SNMP application at the man-
ager side (which kept sending SNMP requests) did not notice the transaction. The test
shows that the hot-swapping transaction time (Timer1) at the agent side usually is between
tens of milliseconds to a couple of hundred milliseconds, while the actual system affected
time (Timer2) is under 30ms. In this application the temporary interruption of the message
processing due to the hot-swapping transaction is a minor performance issue. comparing
with the network delay which may happen for seconds. The standard time-out value is 120

second, according to the RFC2571 [15].

The tests also demonstrate that the whole hot-swapping transaction time and the agent

affected time are determined by the following facts:

e the number of S-Modules to be hot-swapped within one transaction

90

e the number of S-Modules in the S-Module’s dependent list

e the number of S-Components in the agent

However, due to the limitation of this application, it did not demonstrate the dynamic mes-
saging function of an S-Module. Also, since the test is focused on the design and imple-
mentation of S-Modules which follows the rules specified in the previous chapter, it is not
a tull test on all the functionality of the Swap Manager. A test on the whole services of the
Swap Manager, such as the listening service, the security service, the two-phase commit
transaction etc., and a test on the protocol for code remote delivery and dynamic object

instantiating are under research by colleague Gang Ao.

91

Chapter 6 Conclusions, Contributions
and Suggestions for Future

Research

6.1 Conclusions

In this thesis we have proposed a new infrastructure for the software hot-swapping appli-
cations. The infrastructure and its key components are described in Chapter 2 . Several
design approaches have been investigated in Chapter 3 . and the Proxy Pattern approach
has been selected for the further deployment (Chapter 4). The design of the S-Modules
and the hot-swapping framework has been tested successtully by applying them to a real
application in the network management domain. The test results of the swappable
SNMPv3 agent demonstrate that dynamic upgrading one or a group of S-Modules within
the swappable SNMPv3 agent only causes momentary interruption of the message pro-
cessing, the agent is still active and in service while the hot-swapping transaction takes

place (Chapter 5).

It has been demonstrated that a hot-swapping software system can be achieved by follow-
ing the technology and methodology described in this thesis. The software upgrading issue

can be solved by a common technology, instead of a system/program specific technology.

92

Today’s computer and software technology are efficient enough to handle on-line real-

time software upgrading issue.

6.2 Contributions

This thesis has the following contributions:

I. A software hot-swapping infrastructure has been designed to achieve the goal of soft-

ware hot-swapping.

[§8]

- Several approaches for designing the S-Module have been investigated and analyzed.
Among those approaches, the Proxy Pattern approach has been promoted to a detailed

design. which leads to a design of the hot-swapping framework.

3. An SNMPv3 agent is re-constructed according to the design rules described in the hot-
swapping framework. and the test on dynamic upgrading one or more S-Modules of the

agent has been accomplished successfully.

6.3 Suggestions for Future Research

This thesis is just a starting point in the research of software hot-swapping technology.
There are a number of directions that can be considered by people who are interested in

extending this thesis’s work:

1. As mentioned in Section 2.2 on page 6, several other important features in the hot-
swapping infrastructure, such as a protocol for code migration, the dynamic object

instantiation, a detailed design on the complex hot-swapping transaction, should be

93

(L)

developed and integrated with this thesis work to achieve the goal of a complete hot-

swapping activity.

In this thesis we have investigated several design patterns, such as Proxy Pattern.
Observer Pattern, Mediator Pattern, for their employment in the software hot-swapping
technique. Other design patterns, such as the Facade Pattern, may also be employed to
achieve the goal of software hot-swapping. More investigation and comparison could

be done in the design of hot-swapping framework.

. The Proxy Pattern approach has been developed and implemented in this thesis. The

further evaluation of this approach. especially on the performance assessment. could
reveal more advantages and disadvantages of the hot-swapping framework. as well as

the infrastructure which has been described in Chapter 2 .

. Although in this thesis we have focussed on an application in the network management

software entity. the SNMPv3 agent. the research on software hot-swapping is widely
applicable within the Software Engineering domain. Other more complicated applica-

tions may assess more features which could not be tested by this single application.

94

References

[1] Gang Ao. “Software Hot-swapping Technique (draft),” Technical Report SCE-98-11,
Systems and Computer Engineering, Carleton University, Ottawa Canada, November

1998.

[2] N.Feng, G.Ao, T.White and B.Pagurek. “Software Hot-swapping Technology Design.”
Technical Report SCE-99-04. Systems and Computer Engineering, Carleton Univer-

sity, Ottawa, Canada. June 1999.

[3] E.Gamma, R. Helm. R.Johnson, and J. Vlissides. “Design Patterns: Elements of Reus-

able Object-Oriented Sottware.” Addison-Wesley Publishing Company, 1995.

[4] Tim Lindholm and Frank Yellin. “The Java Virtual Machine Specification,” Addison-

Wesley. 1997.

[5] Laura Lemay and Charles L. Perkin, “Teach Yourself Java [.l in 21 Days,” Sams.net

Publishing, 1997.

[6] Alex Blewitt, “Use Dynamic Messaging in Java,” available at URL: http://www.java-

world.com/javaworld/javatips/jw-javatip7 | .html.

[71 “Java™ Development Kit 1.1.” available at URL: http://java.sun.com/products/

jdk1.1.

[8] Chuck McManis, “Take an In-depth Look at the Java Reflection API,” available at

URL: http://www.javaworld.com/javaworld/jw-09-1997/jw-09-indepth.html.

95

[9] Bill Venners, “Design with Run-time Class Information,” available at URL: http://jav-

aworld.com/javaworld/jw-02-1999/jw-02-techniques.html.

[10] “SNMP Version 3 (SNMPv3)”, available at URL: http://www.ibr.cs.tu-bs.de?ietf/

snmpv3/.

[I1] William Stallings. “SNMP, SNMPv2, and CMIP. the Practical Guild to Network

Management Standards,” Addison-Wesley, 1993.
[12] *Modular SNMP Project,” available at URL.: http://www.teleinfo.ugam.ca/snmp/.

[13] Omar Cherkaoui. Nathalie Rico. “SNMPv3 Can Still Be Simple?.” [EEE/IFIP Net-

work Operations and Management Symposium (NOMS’99), Boston, MA. May 1999.

[t4] William Stallings. “SNMPv3: A Security Enhancement for SNMP.” [EEE Communi-

cation Surveys. Fourth Quarter 1998. Vol.l No.l.

[15] D.Harrington. R.Presuhn, B.Wijnen. “An Architecture for Describing SNMP Man-

agement Frameworks,” RFC2571, May 1999.

[16] J.Case, D.Harrington, R.presuhn, B.Wijnen, “Message Processing and Dispatching

for the Simple Network Management Protocol (SNMP),” RFC2572, May 1999.
[17] D.Levi, P.Meyer, B.Stewart, “SNMPv3 Applications,” RFC2573, April 1999.

(18] U.Blumenthal, B.Wijnen, “The User-Based Security Model for Version 3 of the Sim-

ple Network Management Protocol (SNMPv3),” RFC2574, April 1999.

[19] B.Wijnen, R.Presuhn, K.McCloghrie, “View-based Access Control Model for the

Simple Network Management Protocol (SNMP),” RFC2575, April 1999.

96

